2022
A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness
Zhang H, Zhu Y, Liu Z, Peng Y, Peng W, Tong L, Wang J, Liu Q, Wang P, Cheng G. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell 2022, 185: 2510-2522.e16. PMID: 35777355, DOI: 10.1016/j.cell.2022.05.016.Peer-Reviewed Original ResearchSkin microbiotaMosquito-transmitted flavivirusDengue patientsFlavivirus infectionFlavivirus life cycleDietary administrationHealthy peopleCommensal bacteriaZika virusHost skinMosquito attractivenessArboviral transmissionRELMαAedes mosquitoesMicrobiotaMosquito olfactionInfected hostAntimicrobial proteinsHematophagous arthropodsHost-seeking activityMosquitoesIsotretinoinPatientsInfectionMice
2019
Arbovirus lifecycle in mosquito: acquisition, propagation and transmission
Wu P, Yu X, Wang P, Cheng G. Arbovirus lifecycle in mosquito: acquisition, propagation and transmission. Expert Reviews In Molecular Medicine 2019, 21: e1. PMID: 30862324, DOI: 10.1017/erm.2018.6.Peer-Reviewed Original ResearchConceptsDistinct host environmentsBlood mealHaematophagous vectorsVertebrate animalsVertebrate hostsMosquito-Borne VirusesHuman diseasesNaive mosquitoesHost environmentMosquito tissuesNext blood mealInfected hostVector factorsMosquitoesPathogenic virusesHostVirus reservoirVirus survivalRecent studiesAetiological agentVirusTissueMealDisease
2017
Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes
Liu Y, Liu J, Du S, Shan C, Nie K, Zhang R, Li XF, Zhang R, Wang T, Qin CF, Wang P, Shi PY, Cheng G. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 2017, 545: 482-486. PMID: 28514450, PMCID: PMC5885636, DOI: 10.1038/nature22365.Peer-Reviewed Original Research
2011
Spontaneous Emergence of Multiple Drug Resistance in Tuberculosis before and during Therapy
Colijn C, Cohen T, Ganesh A, Murray M. Spontaneous Emergence of Multiple Drug Resistance in Tuberculosis before and during Therapy. PLOS ONE 2011, 6: e18327. PMID: 21479171, PMCID: PMC3068161, DOI: 10.1371/journal.pone.0018327.Peer-Reviewed Original ResearchConceptsMultiple drug resistanceDrug resistanceInitial treatment regimensTB control programsAnti-TB drugsDrug-resistant formsEmergence of resistanceFunctional monotherapyTreatment regimensCombination therapyTB strainsTuberculosis treatmentTherapy rangeM. tbTB bacilliMultidrug resistanceM. tuberculosisDifferent antibioticsTherapyTuberculosisInfected hostControl programsResistant formsTBMonotherapy
2004
Molecular Characterization of Ancylostoma ceylanicum Kunitz-Type Serine Protease Inhibitor: Evidence for a Role in Hookworm-Associated Growth Delay
Chu D, Bungiro RD, Ibanez M, Harrison LM, Campodonico E, Jones BF, Mieszczanek J, Kuzmic P, Cappello M. Molecular Characterization of Ancylostoma ceylanicum Kunitz-Type Serine Protease Inhibitor: Evidence for a Role in Hookworm-Associated Growth Delay. Infection And Immunity 2004, 72: 2214-2221. PMID: 15039345, PMCID: PMC375216, DOI: 10.1128/iai.72.4.2214-2221.2004.Peer-Reviewed Original ResearchConceptsGrowth delayAdult hookwormsIron deficiency anemiaPolyclonal immunoglobulin GDeficiency anemiaHookworm infectionReverse transcription-PCRKunitz-type serine protease inhibitorImmunohistochemistry studiesBroad-spectrum inhibitorPartial protectionMajor causeImmunoglobulin GSerine protease inhibitorIntestinal proteasesThird-stage larvaeTranscription-PCRProtease inhibitorsAnemiaHookwormVivo roleMalnutritionInhibitorsInfected hostPancreatic elastase
2002
Conflicting needs for a Salmonella hypervirulence gene in host and non‐host environments
Mouslim C, Hilbert F, Huang H, Groisman EA. Conflicting needs for a Salmonella hypervirulence gene in host and non‐host environments. Molecular Microbiology 2002, 45: 1019-1027. PMID: 12180921, DOI: 10.1046/j.1365-2958.2002.03070.x.Peer-Reviewed Original ResearchConceptsSole carbon sourceD-Ala-D-Ala dipeptidaseNon-host environmentsNutrient-poor conditionsPathogen Salmonella entericaCarbon sourceWild-type SalmonellaPathogen fitnessFaster growth rateGenesInfected hostHypervirulence genesMutantsInnate immunitySalmonella entericaDipeptidase activityGrowth rateHostInactivationPhenotypeFitnessDipeptidasePathogensSalmonellaEnterica
2001
Genetic variability among populations of Lutzomyia (Psathyromyia) shannoni (Dyar 1929) (Diptera: Psychodidae: Phlebotominae) in Colombia
Cárdenas E, Munstermann L, Martínez O, Corredor D, Ferro C. Genetic variability among populations of Lutzomyia (Psathyromyia) shannoni (Dyar 1929) (Diptera: Psychodidae: Phlebotominae) in Colombia. Memórias Do Instituto Oswaldo Cruz 2001, 96: 189-196. PMID: 11285496, DOI: 10.1590/s0074-02762001000200010.Peer-Reviewed Original ResearchConceptsGenetic distanceNei's genetic distanceWright's F-statisticsF-statisticsGene flowF STIsozyme lociForest populationsMean heterozygosityGPI locusInfected insectsGenetic variationColony samplesGenetic variabilityLutzomyia shannoniPolyacrylamide gel electrophoresisConsequences of colonizationLaboratory coloniesLociInfected hostStomatitis virusGel electrophoresisCentral ColombiaMagdalena ValleyLow levelsProspects for control of African trypanosomiasis by tsetse vector manipulation
Aksoy S, O'Neill S, Maudlin I, Dale C, Robinson A. Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends In Parasitology 2001, 17: 29-35. PMID: 11137738, DOI: 10.1016/s1471-4922(00)01850-x.Peer-Reviewed Original ResearchConceptsArea-wide approachHuman disease managementLivestock ownersAnimal diseasesAgricultural outputMolecular genetic approachesImportant insectsInfected hostDisease managementEconomic incentivesTsetse populationsVector manipulationGenetic approachesMammalian hostsVector competenceEffective vaccineDiseases reliesHostTrypanosomiasisControl strategyInsectsAfrican trypanosomiasisTsetseLong runControl
2000
Acquisition of Coinfection and Simultaneous Transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis Ticks
Levin M, Fish D. Acquisition of Coinfection and Simultaneous Transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis Ticks. Infection And Immunity 2000, 68: 2183-2186. PMID: 10722618, PMCID: PMC97402, DOI: 10.1128/iai.68.4.2183-2186.2000.Peer-Reviewed Original ResearchConceptsHuman granulocytic ehrlichiosisPrior infection statusGranulocytic ehrlichiosisInfected miceLyme diseaseInfection statusI. scapularis nymphsScapularis ticksSecond pathogenSusceptible hostsScapularis nymphsInfected hostIxodes scapularis ticksPrevious infectionI. scapularis ticksEhrlichia phagocytophilaUninfected ticksInfected ticksMiceBorrelia burgdorferiDiseaseEhrlichiosisBorreliaEvidence of interactionNymphal ticksThe Two Faces of Mutation: Extinction and Adaptation in RNA Viruses
Elena S, Miralles R, Cuevas J, Turner P, Moya A. The Two Faces of Mutation: Extinction and Adaptation in RNA Viruses. IUBMB Life 2000, 49: 5-9. PMID: 10772334, DOI: 10.1080/713803585.Peer-Reviewed Original ResearchConceptsRNA virusesPopulation sizeGenetic variabilityDrastic fitness lossFace of mutationCellular DNA replicationHigh genetic variabilityEffects of mutationsLarge population sizesViral population sizeBottleneck eventsGenetic driftFitness lossDNA replicationFitness gainsSegment exchangeDifferent tissuesViral extinctionReplicative intermediatesInfected hostExtinctionMutationsPopulation standpointHostReplication
1995
An ospA frame shift, identified from DNA in Lyme arthritis synovial fluid, results in an outer surface protein A that does not bind protective antibodies.
Fikrig E, Liu B, Fu LL, Das S, Smallwood JI, Flavell RA, Persing DH, Schoen RT, Barthold SW, Malawista SE. An ospA frame shift, identified from DNA in Lyme arthritis synovial fluid, results in an outer surface protein A that does not bind protective antibodies. The Journal Of Immunology 1995, 155: 5700-4. PMID: 7499856, DOI: 10.4049/jimmunol.155.12.5700.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAmino Acid SequenceAnimalsAntibodies, BacterialAntigens, SurfaceArthritis, InfectiousBacterial Outer Membrane ProteinsBacterial VaccinesBorrelia burgdorferi GroupFemaleFrameshift MutationHumansLipoproteinsLyme DiseaseMiceMice, Inbred C3HMolecular Sequence DataProtein BindingSynovial FluidConceptsSurface protein AOuter surface protein ASynovial fluidChronic Lyme arthritisSynovial fluid samplesSeparate time pointsImmune effectivenessLyme arthritisPassive immunizationProtective antibodiesHuman infectionsHuman AbsProtein ATime pointsNatural infectionInfectionBorrelia burgdorferiMiceOnly factorHuman hostFluid samplesOspAInfected hostHuman materialMicrobial persistenceBorrelia burgdorferi genes selectively expressed in the infected host.
Suk K, Das S, Sun W, Jwang B, Barthold SW, Flavell RA, Fikrig E. Borrelia burgdorferi genes selectively expressed in the infected host. Proceedings Of The National Academy Of Sciences Of The United States Of America 1995, 92: 4269-4273. PMID: 7753795, PMCID: PMC41925, DOI: 10.1073/pnas.92.10.4269.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntibodies, BacterialAntigen-Antibody ReactionsAntigens, BacterialBacterial VaccinesBase SequenceBlotting, NorthernBorrelia burgdorferi GroupDNA PrimersDNA, BacterialGene ExpressionGene Transfer TechniquesGenes, BacterialGenomic LibraryImmunizationMiceMice, Inbred C3HMolecular Sequence DataPolymerase Chain ReactionSequence Homology, Amino AcidConceptsInfected hostRNA PCRDifferential screeningScreening strategyExpression libraryB. burgdorferiSelective expressionNorthern blot analysisBlot analysisMiceBorrelia burgdorferi genesB. burgdorferi genesVivoGene transfer systemMicrobial genesScreening methodPathogenic microorganismsScreeningGenesAntigen
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply