2025
Flash Communication: Ir Complexes with a PhN(CH2CH2PiPr2)2 Pincer Ligand for Reversible CO2 Hydrogenation
Curley J, Hert C, Bernskoetter W, Hazari N, Mercado B, Wedal J. Flash Communication: Ir Complexes with a PhN(CH2CH2PiPr2)2 Pincer Ligand for Reversible CO2 Hydrogenation. Organometallics 2025 DOI: 10.1021/acs.organomet.5c00153.Peer-Reviewed Original ResearchCatalyst-Controlled Site-Selective and Epimer-Selective Hydrogenations of Thiostrepton
Peterson P, Mercado B, Miller S. Catalyst-Controlled Site-Selective and Epimer-Selective Hydrogenations of Thiostrepton. Journal Of The American Chemical Society 2025, 147: 17161-17169. PMID: 40358225, PMCID: PMC12126753, DOI: 10.1021/jacs.5c02720.Peer-Reviewed Original ResearchConceptsPhosphoramidite ligandAsymmetric hydrogenation methodMonodentate phosphoramidite ligandsStereoselectivity of reductionX-ray crystallographyStudies of ligandsModel substrateProtecting-groupLigand chiralityLigand scaffoldStereochemical outcomeAbsolute stereochemistryMild conditionsMultidimensional nuclear magnetic resonance methodsNuclear magnetic resonance methodsDehydroalanine residueHydrogenation methodLigandX-rayHydrogenStereoisomersStereochemistryControlled formationStericallyMagnetic resonance methods
2024
Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2
Fernández S, Assaf E, Ahmad S, Travis B, Curley J, Hazari N, Ertem M, Miller A. Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angewandte Chemie International Edition 2024, 64: e202416061. PMID: 39571086, DOI: 10.1002/anie.202416061.Peer-Reviewed Original ResearchTransfer hydrogenationMethanol synthesisIsopropyl formateReduction of CO2 to methanolCO2 reduction to formateCO2 to methanolHydrogen bonding interactionsReduction to formateFormate to methanolEnergy-dense liquid fuelsRoom temperature reductionMulticatalyst systemsOrganometallic catalystsOrganometallic reactionsFormate ionTrifluoromethanesulfonic acidBonding interactionsFischer esterificationFormate estersIsopropanol solventHydrogenMethanolEster substratesElectrocatalystsEnergy storageRoom‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2
Fernández S, Assaf E, Ahmad S, Travis B, Curley J, Hazari N, Ertem M, Miller A. Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angewandte Chemie 2024, 137 DOI: 10.1002/ange.202416061.Peer-Reviewed Original ResearchTransfer hydrogenationMethanol synthesisIsopropyl formateReduction of CO2 to methanolCO2 reduction to formateCO2 to methanolHydrogen bonding interactionsReduction to formateFormate to methanolEnergy-dense liquid fuelsRoom temperature reductionMulticatalyst systemsOrganometallic catalystsOrganometallic reactionsFormate ionTrifluoromethanesulfonic acidBonding interactionsFischer esterificationFormate estersIsopropanol solventHydrogenMethanolEster substratesElectrocatalystsEnergy storageThe Jekyll-and-Hyde electron transfer chemistry of hydrogen bonds
Dahl P, Malvankar N. The Jekyll-and-Hyde electron transfer chemistry of hydrogen bonds. Nature Chemistry 2024, 16: 1746-1747. PMID: 39402253, DOI: 10.1038/s41557-024-01656-0.Peer-Reviewed Original ResearchWhere is the hidden intramolecular H-bonding vibrational signal in the proline matrix IR spectrum?
Langford J, Zhang Y, Chen Z, Yang Y. Where is the hidden intramolecular H-bonding vibrational signal in the proline matrix IR spectrum? The Journal Of Chemical Physics 2024, 161: 134302. PMID: 39351935, DOI: 10.1063/5.0226184.Peer-Reviewed Original ResearchSynthesis of Monodehydro-Diketopiperazines Enabled by Cp*Rh(III)-Catalyzed Amine-Directed N–H Functionalization
Molas J, Poag E, Ellman J. Synthesis of Monodehydro-Diketopiperazines Enabled by Cp*Rh(III)-Catalyzed Amine-Directed N–H Functionalization. Organic Letters 2024, 26: 8527-8531. PMID: 39332014, PMCID: PMC11512471, DOI: 10.1021/acs.orglett.4c03105.Peer-Reviewed Original ResearchA synergetic cocatalyst for conversion of carbon dioxide, sunlight, and water into methanol
Ye Z, Yang K, Zhang B, Navid I, Shen Y, Xiao Y, Pofelski A, Botton G, Ma T, Mondal S, Norris T, Batista V, Mi Z. A synergetic cocatalyst for conversion of carbon dioxide, sunlight, and water into methanol. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2408183121. PMID: 39172778, PMCID: PMC11363284, DOI: 10.1073/pnas.2408183121.Peer-Reviewed Original ResearchConversion of CO<sub>2</sub>Proton-coupled electron transfer pathwayConversion of carbon dioxideSynthesis of methanolTransfer of protonsElectron transfer pathwayVectorial transfer of protonsPhotocatalytic architecturesCore-shell nanoparticlesCore-shell interfaceCatalytic materialsProton reductionHydrogen spilloverProduct selectivityHydrogen atomsTransfer pathwayCore-shellAqueous solutionOxide shellHydrogenVectorial transferMethanolWireless systemsProtonSemiconducting nanowiresCatalytic Enantioselective Sulfoxidation of Functionalized Thioethers Mediated by Aspartic Acid-Containing Peptides
Huth S, Tampellini N, Guerrero M, Miller S. Catalytic Enantioselective Sulfoxidation of Functionalized Thioethers Mediated by Aspartic Acid-Containing Peptides. Organic Letters 2024, 26: 6872-6877. PMID: 39102356, PMCID: PMC11329351, DOI: 10.1021/acs.orglett.4c02452.Peer-Reviewed Original ResearchConceptsEnantioselective oxidation of sulfidesModel of transition stateLevels of enantioinductionOxidation of sulfidesChiral sulfoxidesPeptide catalystsTransition stateEnantioselective sulfoxidationAspartic acid-containing peptidesSulfoxideThioethersEnantioinductionCatalystMoietySubstrateHydrogenSulfideExperimental evidenceCrystallographic and Computational Insights into Isoform-Selective Dynamics in Nitric Oxide Synthase
Li H, Hardy C, Reidl C, Jing Q, Xue F, Cinelli M, Silverman R, Poulos T. Crystallographic and Computational Insights into Isoform-Selective Dynamics in Nitric Oxide Synthase. Biochemistry 2024, 63: 788-796. PMID: 38417024, PMCID: PMC10956423, DOI: 10.1021/acs.biochem.3c00601.Peer-Reviewed Original ResearchConceptsHydrogen bondsHeme propionatesDimer interfaceInhibitor bindingCombination of crystallographyInhibitor binding siteDevelopment of isoform-selective inhibitorsIsoform-selective inhibitorsStructural basisComputational insightsStructural changesInhibitor moleculesChanges conformationBinding sitesConformational changesBondsSite inhibitorsPterin cofactorBindingHydrogenSynthaseDimerStructural differencesTyrosineInhibitors
2022
Highly stable preferential carbon monoxide oxidation by dinuclear heterogeneous catalysts
Zhao Y, Dai S, Yang K, Cao S, Materna K, Lant H, Kao L, Feng X, Guo J, Brudvig G, Flytzani-Stephanopoulos M, Batista V, Pan X, Wang D. Highly stable preferential carbon monoxide oxidation by dinuclear heterogeneous catalysts. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 120: e2206850120. PMID: 36577066, PMCID: PMC9910598, DOI: 10.1073/pnas.2206850120.Peer-Reviewed Original ResearchHarnessing selenocysteine to enhance microbial cell factories for hydrogen production
Patel A, Mulder D, Söll D, Krahn N. Harnessing selenocysteine to enhance microbial cell factories for hydrogen production. Frontiers In Catalysis 2022, 2: 1089176. PMID: 36844461, PMCID: PMC9961374, DOI: 10.3389/fctls.2022.1089176.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2018
Structure–Function Relationship in Ester Hydrogenation Catalyzed by Ruthenium CNN-Pincer Complexes
Le L, Liu J, He T, Kim D, Lindley E, Cervarich T, Malek J, Pham J, Buck M, Chianese A. Structure–Function Relationship in Ester Hydrogenation Catalyzed by Ruthenium CNN-Pincer Complexes. Organometallics 2018, 37: 3286-3297. DOI: 10.1021/acs.organomet.8b00470.Peer-Reviewed Original ResearchN-heterocyclic carbeneActive catalystCatalytic hydrogenation of estersN-heterocyclic carbene substituentsDialkylamino donor groupsHydrogenation of estersPincer ruthenium complexesNHC substituentsEster hydrogenationDialkylamino groupSteric bulkRuthenium complexesAmine substituentsCatalytic hydrogenationComplete hydrogenationEthyl groupMethyl groupDonor groupsSubstituentsCatalystStructure-function relationshipsRutheniumEsterHydrogenCarbeneA surface-display biohybrid approach to light-driven hydrogen production in air
Wei W, Sun P, Li Z, Song K, Su W, Wang B, Liu Y, Zhao J. A surface-display biohybrid approach to light-driven hydrogen production in air. Science Advances 2018, 4: eaap9253. PMID: 29492458, PMCID: PMC5821488, DOI: 10.1126/sciadv.aap9253.Peer-Reviewed Original ResearchSolar-to-chemical productionHydrogen productionLight-driven hydrogen productionPhotocatalytic hydrogen productionLight-harvesting semiconductorsCadmium sulfide nanoparticlesCatalytic approachSurface-display systemInduce hydrogen productionSulfide nanoparticlesSelf-aggregationPhotosynthetic systemsEncapsulation strategyAerobic conditionsNatural aerobic conditionsIn situ biosynthesisHybrid systemCatalysisHydrogenGlobal energyNanoparticlesCellsSemiconductor
2016
Ester Hydrogenation Catalyzed by CNN-Pincer Complexes of Ruthenium
Kim D, Le L, Drance M, Jensen K, Bogdanovski K, Cervarich T, Barnard M, Pudalov N, Knapp S, Chianese A. Ester Hydrogenation Catalyzed by CNN-Pincer Complexes of Ruthenium. Organometallics 2016, 35: 982-989. DOI: 10.1021/acs.organomet.6b00009.Peer-Reviewed Original ResearchDehydrogenation of primary alcoholsCatalytic turnoverComplexes of rutheniumHydrogenation of estersMethyl esterEster hydrogenationRuthenium complexesLigand structureReaction conditionsInactive catalystsMild conditionsBenzyl alcoholPrimary alcoholsReaction mixtureHydrogenReverse reactionLigandEsterCatalystDehydrogenationBase-catalyzed transesterificationBenzylRutheniumReactionHexyl ester
2007
Structural Analysis of Lac Repressor Bound to Allosteric Effectors
Daber R, Stayrook S, Rosenberg A, Lewis M. Structural Analysis of Lac Repressor Bound to Allosteric Effectors. Journal Of Molecular Biology 2007, 370: 609-619. PMID: 17543986, PMCID: PMC2715899, DOI: 10.1016/j.jmb.2007.04.028.Peer-Reviewed Original ResearchConceptsHydrogen bond networkHydrogen bondsExtensive hydrogen-bonding networkWater-mediated hydrogen bond networkSugar ringBond networkCrystal structureHydroxyl groupsAllosteric transitionEffector moleculesAnti-inducerSmall moleculesAtomic detailMoleculesStructural conformationC-terminal sub-domainBondsApo-repressorHydrogenHydroxylRepressor functionLac operonLac repressorN-terminalRepressor
2002
Mapping of protein:protein contact surfaces by hydrogen/deuterium exchange, followed by on-line high-performance liquid chromatography–electrospray ionization fourier-transform ion-cyclotron-resonance mass analysis
Lam TT, Lanman JK, Emmett MR, Hendrickson CL, Marshall AG, Prevelige PE. Mapping of protein:protein contact surfaces by hydrogen/deuterium exchange, followed by on-line high-performance liquid chromatography–electrospray ionization fourier-transform ion-cyclotron-resonance mass analysis. Journal Of Chromatography A 2002, 982: 85-95. PMID: 12489858, DOI: 10.1016/s0021-9673(02)01357-2.Peer-Reviewed Original ResearchConceptsHigh-Performance Liquid Chromatography-Electrospray IonizationMass analysisHydrogen/deuterium exchangeLiquid Chromatography-Electrospray IonizationNuclear magnetic resonance analysisX-ray diffractionFront-end separationMagnetic resonance analysisBackbone amide hydrogensProtein contact surfacesAmide hydrogensDeuterium exchangeConventional X-ray diffractionH/2H exchangeReaction periodResonance analysisLow concentrationsDiffractionProtein complexesComplexedHydrogenComplexesIonizationSeparationSurface
2001
Water Penetration and Binding to Ferric Myoglobin †
Cao W, Christian J, Champion P, Rosca F, Sage J. Water Penetration and Binding to Ferric Myoglobin †. Biochemistry 2001, 40: 5728-5737. PMID: 11341838, DOI: 10.1021/bi010067e.Peer-Reviewed Original ResearchConceptsH2O bindingHeme pocketHydrogen bondsHis-64Heme ironFlash photolysis investigationsPhotodissociation of NOFerric heme proteinsH2O ligandsWater moleculesNO photolysisHorse heart metmyoglobinHeme proteinsCO escapeBound waterRebinding rateSmall moleculesH2OPhotolysisDissociation constantBondsHydrogenHemeMoleculesPhysiological NO concentrations
1993
The structural enzymology of proton-transfer reactions
Petsko G, Ringe D, Allen K, Lavie A, Gerhart-Mueller E, Clifton J, Hasson M, Fujita S, Sugio S, Xhang X, Davenport R, Lolis E, Neidhart D, Kenyon G, Gerlt J, Knowles J, Bash P, Karplus M. The structural enzymology of proton-transfer reactions. Protein Engineering Design And Selection 1993, 6: 37-37. DOI: 10.1093/protein/6.supplement.37-a.Peer-Reviewed Original ResearchProton-transfer reactionsProton transfer reactionsEfficient proton transferX-ray crystallographyMolecular dynamics simulationsProton transferTransfer reactionsChemical transformationsLow pKaDynamics simulationsEnzymic baseX-rayOptimal catalysisStructural featuresCarbonic acidReactionStructural enzymologyPKACrystallographyCatalysisSite-directed mutagenesisHydrogenProtonChemicalCarbon
1989
A Convenient Synthesis of 3-Alkyl-4-aminobutanoic Acids
Andruszkiewicz* R, Silverman R. A Convenient Synthesis of 3-Alkyl-4-aminobutanoic Acids. Synthesis 1989, 1989: 953-955. DOI: 10.1055/s-1989-27443.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply