2024
Tumor Necrosis Factor Receptor-2 Signals Clear-Cell Renal Carcinoma Proliferation via Phosphorylated 4E Binding Protein-1 and Mitochondrial Gene Translation
Al-Lamki R, Tolkovsky A, Alawwami M, Lu W, Field S, Wang J, Pober J, Bradley J. Tumor Necrosis Factor Receptor-2 Signals Clear-Cell Renal Carcinoma Proliferation via Phosphorylated 4E Binding Protein-1 and Mitochondrial Gene Translation. American Journal Of Pathology 2024, 194: 1374-1387. PMID: 38537932, PMCID: PMC12178386, DOI: 10.1016/j.ajpath.2024.02.019.Peer-Reviewed Original ResearchClear cell renal cell carcinomaCell cycle entryTumor necrosis factorSignaling pathwayTumor cellsTNFR2 signaling pathwayCell surface receptorsIncreased cell deathSecrete tumor necrosis factorCell cycle activitySerine 65Cell renal cell carcinomaPhosphorylation of 4EBP1Renal cell carcinomaInhibition of mTORGene translationSelective ligationMitochondrial functionCell deathDownstream targetsPharmacological inhibition of mTORClear cell renal cell carcinoma tissuesSurface receptorsPI3KEpithelial malignancies
2019
A randomized phase 3 trial of paclitaxel (P) plus carboplatin (C) versus paclitaxel plus ifosfamide (I) in chemotherapy-naive patients with stage I-IV, persistent or recurrent carcinosarcoma of the uterus or ovary: An NRG Oncology trial.
Powell M, Filiaci V, Hensley M, Huang H, Moore K, Tewari K, Copeland L, Secord A, Mutch D, Santin A, Richards W, Warshal D, Spirtos N, Disilverstro P, Ioffe O, Miller D. A randomized phase 3 trial of paclitaxel (P) plus carboplatin (C) versus paclitaxel plus ifosfamide (I) in chemotherapy-naive patients with stage I-IV, persistent or recurrent carcinosarcoma of the uterus or ovary: An NRG Oncology trial. Journal Of Clinical Oncology 2019, 37: 5500-5500. DOI: 10.1200/jco.2019.37.15_suppl.5500.Peer-Reviewed Original ResearchQuality of lifeOverall survivalEligible ptsRandomized phase 3 trialSimilar QOLStratified log-rank testAggressive epithelial malignancyNew standard regimenNRG Oncology trialsStages I-IVbChemotherapy-naive patientsPhase 3 trialLog-rank testPhase 2 activityGenitourinary hemorrhageNeurotoxicity scoresO cohortRecurrent carcinosarcomaPrimary endpointStandard regimenLonger PFSHazard ratioOptimal therapyGynecologic carcinosarcomaEpithelial malignancies
2017
The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma
Cadamuro M, Stecca T, Brivio S, Mariotti V, Fiorotto R, Spirli C, Strazzabosco M, Fabris L. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochimica Et Biophysica Acta (BBA) - Molecular Basis Of Disease 2017, 1864: 1435-1443. PMID: 28757170, PMCID: PMC6386155, DOI: 10.1016/j.bbadis.2017.07.028.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsTumor reactive stromaReactive stromaMain cellular componentsDeleterious interplayCyto/chemokinesCellular componentsParacrine signalsPrognosis of cholangiocarcinomaTumor epithelial cellsCell interactionsEarly invasivenessJesus BanalesMarco MarzioniNicholas LaRussoPeter JansenDifferent cell elementsEpithelial cellsEpithelial malignanciesTumor behaviorTumor epitheliumGrowth factorNeoplastic cellsTumor progressionCentral roleStromal componentsTumor reactive stroma in cholangiocarcinoma: The fuel behind cancer aggressiveness
Brivio S, Cadamuro M, Strazzabosco M, Fabris L. Tumor reactive stroma in cholangiocarcinoma: The fuel behind cancer aggressiveness. World Journal Of Hepatology 2017, 9: 455-468. PMID: 28396716, PMCID: PMC5368623, DOI: 10.4254/wjh.v9.i9.455.Peer-Reviewed Original ResearchTumor reactive stromaReactive stromaCCA progressionStromal cellsAggressive epithelial malignancyReactive stromal cellsProgression of cholangiocarcinomaEarly lymphDismal prognosisBiliary carcinogenesisCancer cell behaviorConventional chemotherapyBreast carcinomaDesmoplastic microenvironmentEpithelial malignanciesCancer aggressivenessCell aggressivenessNeoplastic cellsCholangiocarcinomaMetastatic disseminationCombinatorial therapySoluble factorsCancer typesParacrine communicationExtracellular matrixComprehensive Analysis of PAX8 Expression in Epithelial Malignancies of the Uterine Cervix
Wong S, Hong W, Hui P, Buza N. Comprehensive Analysis of PAX8 Expression in Epithelial Malignancies of the Uterine Cervix. International Journal Of Gynecological Pathology 2017, 36: 101-106. PMID: 27362905, DOI: 10.1097/pgp.0000000000000309.Peer-Reviewed Original ResearchConceptsSquamous cell carcinomaEpithelial malignanciesPAX8 expressionAdenosquamous carcinomaMajority of SCCsCervical squamous cell carcinomaPossible primary sitesEndometrioid-type tumorsWeak nuclear stainingTissue microarray slidesGynecologic malignanciesEndometrial adenocarcinomaEndometrioid adenocarcinomaMetastatic lesionsEndometrial carcinomaMetastatic sitesUterine cervixCell carcinomaCervical tumorsEndocervical adenocarcinomaDifferential diagnosisPrimary siteAdenocarcinomaCarcinomaMalignancy
2016
Thymic Carcinoma Management Patterns among International Thymic Malignancy Interest Group (ITMIG) Physicians with Consensus from the Thymic Carcinoma Working Group
Shepherd A, Riely G, Detterbeck F, Simone CB, Ahmad U, Huang J, Korst R, Rajan A, Rimner A. Thymic Carcinoma Management Patterns among International Thymic Malignancy Interest Group (ITMIG) Physicians with Consensus from the Thymic Carcinoma Working Group. Journal Of Thoracic Oncology 2016, 12: 745-751. PMID: 27876674, PMCID: PMC5545114, DOI: 10.1016/j.jtho.2016.11.2219.Peer-Reviewed Original ResearchConceptsInternational Thymic Malignancy Interest GroupThymic carcinomaAreas of controversyResectable diseaseMultimodality therapyClinical practiceFirst-line chemotherapy regimenDefinitive surgical resectionRare epithelial malignancyManagement of patientsCurrent clinical practiceFit patientsAdjuvant therapyChemotherapy regimenSurgical resectionThymic malignanciesHistologic confirmationTreatment courseTreatment strategiesEpithelial malignanciesGreat vesselsMultidisciplinary discussionGroup physiciansWorking GroupCarcinoma
2015
Epithelial-to-Mesenchymal Transition and Cancer Invasiveness: What Can We Learn from Cholangiocarcinoma?
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Epithelial-to-Mesenchymal Transition and Cancer Invasiveness: What Can We Learn from Cholangiocarcinoma? Journal Of Clinical Medicine 2015, 4: 2028-2041. PMID: 26703747, PMCID: PMC4693158, DOI: 10.3390/jcm4121958.Peer-Reviewed Original ResearchMesenchymal transitionAbundant stromal reactionEarly metastatic behaviorPrimary liver cancerEMT-like changesPotential therapeutic targetPro-invasive phenotypeSpecific disease mechanismsDismal prognosisBile ductChronic inflammationEMT biomarkersEpithelial malignanciesStromal reactionLiver cancerTumor stromaTherapeutic targetCholangiocarcinomaNew biomarkersTumor metastatizationMetastatic behaviorCCA cellsTherapeutic opportunitiesTumor microenvironmentStromal cells
2013
Synchronous occurrence of nasopharyngeal carcinoma and Hodgkin lymphoma
Stokken J, Manz RM, Flagg A, Gowans L, Anne S. Synchronous occurrence of nasopharyngeal carcinoma and Hodgkin lymphoma. International Journal Of Pediatric Otorhinolaryngology 2013, 78: 154-156. PMID: 24290306, DOI: 10.1016/j.ijporl.2013.10.055.Peer-Reviewed Case Reports and Technical NotesConceptsEpstein-Barr virusHodgkin's lymphomaNasopharyngeal carcinomaLatent Epstein-Barr virus (EBV) infectionEpstein-Barr virus infectionHealthy African American maleAnterior mediastinal massCommon etiologic factorChemo radiationActive diseaseSequential therapyMediastinal massPatient presentingNasopharyngeal massEtiologic factorsVirus infectionEpithelial malignanciesSynchronous occurrenceAfrican American malesCarcinomaLymphomaMalignancyVirusRare eventSimultaneous occurrenceChanging the Way We Do Business: Recommendations to Accelerate Biomarker Development in Pancreatic Cancer
Tempero M, Klimstra D, Berlin J, Hollingsworth T, Kim P, Merchant N, Moore M, Pleskow D, Wang-Gillam A, Lowy A. Changing the Way We Do Business: Recommendations to Accelerate Biomarker Development in Pancreatic Cancer. Clinical Cancer Research 2013, 19: 538-540. PMID: 23344262, DOI: 10.1158/1078-0432.ccr-12-2745.Peer-Reviewed Original ResearchConceptsFood and Drug AdministrationPancreatic cancerFive-year survival of patientsFive-year survivalSurvival of patientsPancreatic ductal adenocarcinomaU.S. Food and Drug AdministrationEpithelial malignanciesDuctal adenocarcinomaDrug AdministrationBiomarker developmentEarly detectionFavorable trendsMalignancyCancerAdenocarcinomaPancreatitisPatients
2011
Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma
Wang NJ, Sanborn Z, Arnett KL, Bayston LJ, Liao W, Proby CM, Leigh IM, Collisson EA, Gordon PB, Jakkula L, Pennypacker S, Zou Y, Sharma M, North JP, Vemula SS, Mauro TM, Neuhaus IM, LeBoit PE, Hur JS, Park K, Huh N, Kwok PY, Arron ST, Massion PP, Bale AE, Haussler D, Cleaver JE, Gray JW, Spellman PT, South AP, Aster JC, Blacklow SC, Cho RJ. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 17761-17766. PMID: 22006338, PMCID: PMC3203814, DOI: 10.1073/pnas.1114669108.Peer-Reviewed Original ResearchConceptsSquamous cell carcinomaLung squamous cell carcinomaCell carcinomaEpithelial malignanciesCutaneous squamous cell carcinomaLymphoblastic leukemia/lymphomaB-cell chronic lymphocytic leukemiaT-cell lymphoblastic leukemia/lymphomaChronic lymphocytic leukemiaLeukemia/lymphomaSquamous epithelial malignanciesFunction mutationsLymphocytic leukemiaTP53 mutationsNotch receptorsHuman malignanciesNOTCH2 mutationsMalignancyCancer progressionFrequent formHuman cancersCell-based assaysOncogenic gainCarcinomaSomatic aberrations
2007
Donor‐Derived Human Bone Marrow Cells Contribute to Solid Organ Cancers Developing After Bone Marrow Transplantation
Avital I, Moreira A, Klimstra D, Leversha M, Papadopoulos E, Brennan M, Downey R. Donor‐Derived Human Bone Marrow Cells Contribute to Solid Organ Cancers Developing After Bone Marrow Transplantation. Stem Cells 2007, 25: 2903-2909. PMID: 17690178, DOI: 10.1634/stemcells.2007-0409.Peer-Reviewed Original ResearchConceptsAllogeneic bone marrow transplantationSolid organ cancersBone marrow-derived stem cellsBone marrow transplantationMarrow-derived stem cellsOrgan cancersMalignant cellsMarrow transplantationStem cellsCells of donor originTotal body irradiationAberrant stem cell differentiationBone marrow cellsBone marrow stem cellsHuman bone marrow cellsMarrow stem cellsBody irradiationEpithelial malignanciesTumor cellularityDonor originMale patientsMarrow cellsHuman bone marrow-derived stem cellsHuman neoplasiaCancer carcinogenesis
2001
Regulation of Cutaneous Malignancy by γδ T Cells
Girardi M, Oppenheim D, Steele C, Lewis J, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar R, Hayday A. Regulation of Cutaneous Malignancy by γδ T Cells. Science 2001, 294: 605-609. PMID: 11567106, DOI: 10.1126/science.1063916.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCarcinogensCell LineCytotoxicity, ImmunologicDimerizationEpidermisEpithelial CellsHistocompatibility Antigens Class IHumansImmunologic SurveillanceLigandsMembrane ProteinsMiceMice, Inbred C57BLMinor Histocompatibility AntigensMolecular Sequence DataNK Cell Lectin-Like Receptor Subfamily KProtein ConformationProtein FoldingReceptors, Antigen, T-Cell, alpha-betaReceptors, Antigen, T-Cell, gamma-deltaReceptors, ImmunologicReceptors, Natural Killer CellRecombinant Fusion ProteinsReverse Transcriptase Polymerase Chain ReactionSkin NeoplasmsT-Lymphocyte SubsetsConceptsT cellsGammadelta cellsLocal T cellsNatural killer cellsΓδ T cellsGammadelta T cellsCytolytic T cellsSkin carcinoma cellsNKG2D engagementMultiple regimensKiller cellsCutaneous malignanciesCutaneous carcinogenesisEpithelial malignanciesRAE-1Human MICAMalignancyCarcinoma cellsSkin cellsCellsNKG2DRegimensMiceEpitheliumCarcinogenesis
1991
Interaction of EBV Genes with Human Epithelial Cells
Rhim J, Arnstein P, Fahraeus R, Rymo L, Klein G, Gradoville L, Miller G, Wang F, Kieff E. Interaction of EBV Genes with Human Epithelial Cells. Experimental Biology And Medicine 1991, 339-345. DOI: 10.1007/978-1-4612-0405-3_48.Peer-Reviewed Original ResearchLatent membrane proteinEpstein-Barr virusHuman epithelial cellsHuman epithelial cell systemsNasopharyngeal carcinomaEpithelial cell systemEBV genesEpithelial cellsVariety of retrovirusesMembrane proteinsEBV latent membrane proteinAd12-SV40 virusRodent cellsViral genesCell transformationDNA plasmid constructsPlasmid constructsGenesHuman epithelial malignanciesMechanism of actionOncogene transfectionLMP genesEpithelial malignanciesPrecise roleEBNA-2
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply