2025
A genetic modifier links integrin α5 to the phenotypic variation in fibronectin 1a mutant zebrafish
Capon S, Maroufidou A, Feltes M, Xu Y, Matharoo D, Jülich D, Holley S, Farber S, Stainier D. A genetic modifier links integrin α5 to the phenotypic variation in fibronectin 1a mutant zebrafish. PLOS Genetics 2025, 21: e1011747. PMID: 40549824, PMCID: PMC12212883, DOI: 10.1371/journal.pgen.1011747.Peer-Reviewed Original ResearchConceptsMutant phenotypePhenotypic variationNonsense mutationGenetic modifiersDouble mutant analysisWhole-genome sequencingITGA5 expressionSevere phenotypeIntegrin alpha 5Mutant analysisMutant larvaeProximal promoterMutantsMutant zebrafishCardia bifidaGene expressionIntegrin A5Genetic backgroundAlpha 5PhenotypeMutationsExpression levelsFibronectinFunctional cardiovascular systemZebrafish
2024
The Impact of Active Ascertainment on Sex-Specific Differences in the Prevalence and Phenotype of Transthyretin Cardiac Amyloidosis: The Screening for Cardiac Amyloidosis With Nuclear Imaging in Minority Populations Study
Chan N, Einstein A, Teruya S, Rodriguez C, Helmke S, Cuomo M, Santana D, Castillo M, Smiley D, Sabogal N, Lamour S, Winburn M, Fine D, de Freitas C, Kattan C, Miller E, Maurer M, Ruberg F. The Impact of Active Ascertainment on Sex-Specific Differences in the Prevalence and Phenotype of Transthyretin Cardiac Amyloidosis: The Screening for Cardiac Amyloidosis With Nuclear Imaging in Minority Populations Study. The American Journal Of Cardiology 2024, 237: 60-64. PMID: 39581521, PMCID: PMC11761373, DOI: 10.1016/j.amjcard.2024.11.019.Peer-Reviewed Original ResearchATTR-CATransthyretin cardiac amyloidosisProportion of womenCardiac amyloidosisReferral cohortLower left ventricular mass indexHigher left ventricular ejection fractionPrevalence of ATTR-CAATTR-CA patientsWild-type diseaseVentricular ejection fractionVentricular mass indexPosterior wall thicknessAscertainment cohortLeft ventricular hypertrophyReduce sex disparitiesHigher proportion of womenATTRwt-CAEjection fractionEchocardiographic evidenceHeart failureMass indexSex-specific differencesSevere phenotypeSex distributionUpregulation versus loss of function of NTRK2 in 44 affected individuals leads to 2 distinct neurodevelopmental disorders
Berger E, Jauss R, Ranells J, Zonic E, von Wintzingerode L, Wilson A, Wagner J, Tuttle A, Thomas-Wilson A, Schulte B, Rabin R, Pappas J, Odgis J, Muthaffar O, Mendez-Fadol A, Lynch M, Levy J, Lehalle D, Lake N, Krey I, Kozenko M, Knierim E, Jouret G, Jobanputra V, Isidor B, Hunt D, Hsieh T, Holtz A, Haack T, Gold N, Dunstheimer D, Donge M, Deb W, De La Rosa Poueriet K, Danyel M, Christodoulou J, Chopra S, Callewaert B, Busche A, Brick L, Bigay B, Arlt M, Anikar S, Almohammal M, Almanza D, Alhashem A, Bertoli-Avella A, Sticht H, Abou Jamra R. Upregulation versus loss of function of NTRK2 in 44 affected individuals leads to 2 distinct neurodevelopmental disorders. Genetics In Medicine 2024, 27: 101326. PMID: 39540377, DOI: 10.1016/j.gim.2024.101326.Peer-Reviewed Original ResearchDevelopmental delayHeterozygous pathogenic variantsTherapy-refractory epilepsyAffected individualsPhenotype of developmental delayDevelopmental delay/intellectual disabilityGlobal developmental delayRecurrent variant c.Associated with global developmental delayCholesterol-binding motifsTrkB activationVariant c.Pathogenic variantsMuscular hypotoniaFeeding difficultiesSevere phenotypeLoss of functionBinding motifVisual impairmentTransmembrane domainTruncating variantsNeurodevelopmental disordersNTRK2CohortVariantsARSA Variant Associated With Late Infantile Metachromatic Leukodystrophy and Carrier Rate in Individuals of Ashkenazi Jewish Ancestry
Rabin R, Hirsch Y, Booth K, Hall P, Yachelevich N, Mistry P, Ekstein J, Pappas J. ARSA Variant Associated With Late Infantile Metachromatic Leukodystrophy and Carrier Rate in Individuals of Ashkenazi Jewish Ancestry. American Journal Of Medical Genetics Part A 2024, 197: e63919. PMID: 39473378, DOI: 10.1002/ajmg.a.63919.Peer-Reviewed Original ResearchIndividuals of Ashkenazi Jewish descentAshkenazi Jewish descentARSA geneIndividuals of Ashkenazi Jewish ancestryFounder variantAshkenazi Jewish populationJewish descentAshkenazi Jewish ancestryBi-allelic pathogenic variantsCompound heterozygous stateNeurodegenerative lysosomal storage diseaseGait abnormalitiesPhysical declineScreening programProtein modelsMetachromatic leukodystrophyPathogenic variantsJewish ancestryCompound heterozygosityLysosomal storage diseaseGenesArsAHeterozygous stateSevere phenotypeLate infantile metachromatic leukodystrophyIntrinsic link between PGRN and Gba1 D409V mutation dosage in potentiating Gaucher disease
Lin Y, Zhao X, Liou B, Fannin V, Zhang W, Setchell K, Wang X, Pan D, Grabowski G, Liu C, Sun Y. Intrinsic link between PGRN and Gba1 D409V mutation dosage in potentiating Gaucher disease. Human Molecular Genetics 2024, 33: 1771-1788. PMID: 39101473, PMCID: PMC11458007, DOI: 10.1093/hmg/ddae113.Peer-Reviewed Original ResearchGaucher diseaseMutation dosageMouse modelDisease severityProgrammed Cell DeathRetinal gliosisBrain transcriptomic analysisGD pathogenesisPGRN deficiencyTissue fibrosisDisease progressionGrn-/- miceSevere phenotypeGlycosphingolipid accumulationTranscriptome analysisInflammatory responseGCase functionMiceCell deathShort life spanNeurobehavioral analysisDiseaseGCase activityNeurodegenerative diseasesPGRNRing Chromosome 19
Wen J, Chong M. Ring Chromosome 19. 2024, 271-278. DOI: 10.1007/978-3-031-47530-6_23.Peer-Reviewed Original ResearchPercentage of mosaicismRare chromosomal aberrationGenotype-phenotype correlationSeverity of clinical featuresGenomic investigationsChromosome 19Genetic imbalanceVariable clinical manifestationsRare genetic abnormalitySurvive into adulthoodCarrier parentsSevere phenotypeClinical featuresLaboratory findingsInherited casesClinical manifestationsGenetic abnormalitiesChromosomal aberrationsClinical implicationsMosaicismFamilial transmissionPhenotypeComprehensive understandingIntellectual disabilityPatientsTranscription regulation by long non-coding RNAs: mechanisms and disease relevance
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nature Reviews Molecular Cell Biology 2024, 25: 396-415. PMID: 38242953, PMCID: PMC11045326, DOI: 10.1038/s41580-023-00694-9.Peer-Reviewed Original ResearchCis-regulatory functionLong non-coding RNAsGene transcriptionNon-coding RNAsTranscription factorsControl of gene transcriptionProtein-coding transcriptsActivation of gene transcriptionDosage-sensitive genesEncode transcription factorsX-chromosome inactivationTranscription unitTranscription elongationGenetic experimentsTranscriptional regulationTranscript stabilityCharacterized lncRNATranscriptionHuman diseasesFindings of lncRNAsImprinted lncRNAsLncRNA involvementLincRNA-p21Severe phenotypeLncRNAs
2023
Cost-Effectiveness of Long-Term Prophylaxis with Plasma-Derived Vs. Recombinant Von Willebrand Factor in Severe Von Willebrand Disease
Waldron C, Ito S, Wang D, Allen C, Viswanathan G, Bona R, Cuker A, Goshua G. Cost-Effectiveness of Long-Term Prophylaxis with Plasma-Derived Vs. Recombinant Von Willebrand Factor in Severe Von Willebrand Disease. Blood 2023, 142: 3698. DOI: 10.1182/blood-2023-188018.Peer-Reviewed Original ResearchSevere von Willebrand diseaseLong-term prophylaxisIncremental net monetary benefitVon Willebrand diseasePlasma-derived von Willebrand factorIncremental cost-effectiveness ratioNet monetary benefitVon Willebrand factorProbabilistic sensitivity analysesDeterministic sensitivity analysesSevere haemophiliaWillebrand factorRecombinant von Willebrand factorWillebrand diseasePhase 3 clinical trialsHealth resource utilizationFactor replacement therapyFrequency of infusionsSubset of patientsCost of prophylaxisType 3 von Willebrand diseaseFactor replacement productsSimilar significant improvementsSevere phenotypeNon-significant reductionA machine learning approach identifies distinct early-symptom cluster phenotypes which correlate with hospitalization, failure to return to activities, and prolonged COVID-19 symptoms
Epsi N, Powers J, Lindholm D, Mende K, Malloy A, Ganesan A, Huprikar N, Lalani T, Smith A, Mody R, Jones M, Bazan S, Colombo R, Colombo C, Ewers E, Larson D, Berjohn C, Maldonado C, Blair P, Chenoweth J, Saunders D, Livezey J, Maves R, Edwards M, Rozman J, Simons M, Tribble D, Agan B, Burgess T, Pollett S, Group F. A machine learning approach identifies distinct early-symptom cluster phenotypes which correlate with hospitalization, failure to return to activities, and prolonged COVID-19 symptoms. PLOS ONE 2023, 18: e0281272. PMID: 36757946, PMCID: PMC9910657, DOI: 10.1371/journal.pone.0281272.Peer-Reviewed Original ResearchConceptsLong-term symptomsPeak CRPInflammatory profileFLU-PROIL-6Military Health System beneficiariesIL-6 concentrationsLong-term clinical managementReturn to activityAssociated with hospitalizationCOVID-19 prognosisQuantitative symptom scoreReturn-to-activitiesProlonged COVID-19 symptomsClusters of participantsLoss of smellRisk of hospitalizationDisease severity phenotypesRunny/stuffy nosePost-symptom onsetPatient prognosisClinical managementSymptom scoresSevere phenotypeCOVID-19 symptoms
2022
Severe Phenotype in Patients with X-linked Hydrocephalus Caused by a Missense Mutation in L1CAM
Tuysuz B, Department of Pediatric Genetics I, Sencicek A, Ozer E, Goc N, Yalcinkaya C, Bilguvar K, Department of Neurosurgery P, Department of Neurology I. Severe Phenotype in Patients with X-linked Hydrocephalus Caused by a Missense Mutation in L1CAM. Turkish Archives Of Pediatrics 2022, 57: 521-525. PMID: 35950747, PMCID: PMC9524456, DOI: 10.5152/turkarchpediatr.2022.22070.Peer-Reviewed Original ResearchWhole-exome sequencingL1 syndromeSevere phenotypeMissense mutationsHemizygous missense mutationClinical characteristicsDifferential diagnosisIndex patientsPatientsCarrier mothersPathogenic missense mutationsMale childrenL1CAM mutationsPathogenic variantsMild formHydrocephalusSpeech delaySyndromeExon 18Truncating mutationsGenetic etiologyIntellectual disabilityL1CAML1CAM geneFamily membersThe microRNA processor DROSHA is a candidate gene for a severe progressive neurological disorder
Barish S, Senturk M, Schoch K, Minogue AL, Lopergolo D, Fallerini C, Harland J, Seemann JH, Stong N, Kranz PG, Kansagra S, Mikati MA, Jasien J, El-Dairi M, Galluzzi P, Acosta M, Adam M, Adams D, Agrawal P, Alejandro M, Alvey J, Amendola L, Andrews A, Ashley E, Azamian M, Bacino C, Bademci G, Baker E, Balasubramanyam A, Baldridge D, Bale J, Bamshad M, Barbouth D, Bayrak-Toydemir P, Beck A, Beggs A, Behrens E, Bejerano G, Bennet J, Berg-Rood B, Bernstein J, Berry G, Bican A, Bivona S, Blue E, Bohnsack J, Bonnenmann C, Bonner D, Botto L, Boyd B, Briere L, Brokamp E, Brown G, Burke E, Burrage L, Butte M, Byers P, Byrd W, Carey J, Carrasquillo O, Chang T, Chanprasert S, Chao H, Clark G, Coakley T, Cobban L, Cogan J, Coggins M, Cole F, Colley H, Cooper C, Cope H, Craigen W, Crouse A, Cunningham M, D'Souza P, Dai H, Dasari S, Davids M, Dayal J, Deardorff M, Dell'Angelica E, Dhar S, Dipple K, Doherty D, Dorrani N, Douine E, Draper D, Duncan L, Earl D, Eckstein D, Emrick L, Eng C, Esteves C, Estwick T, Falk M, Fernandez L, Ferreira C, Fieg E, Findley L, Fisher P, Fogel B, Forghani I, Fresard L, GahlIan-Glass W, Godfrey R, Golden-Grant K, Goldman A, Goldstein D, Grajewski A, Groden C, Gropman A, Gutierrez I, Hahn S, Hamid R, Hanchard N, Hassey K, Hayes N, High F, Hing A, Hisama F, Holm I, Hom J, Horike-Pyne M, Huang A, Huang Y, Isasi R, Jamal F, Jarvik G, Jarvik J, Jayadev S, Johnston J, Karaviti L, Kelley E, Kennedy J, Kiley D, Kohane I, Kohler J, Krakow D, Krasnewich D, Kravets E, Korrick S, Koziura M, Krier J, Lalani S, Lam B, Lam C, Lanpher B, Lanza I, Lau C, LeBlanc K, Lee B, Lee H, Levitt R, Lewis R, Lincoln S, Liu P, Liu X, Longo N, Loo S, Loscalzo J, Maas R, Macnamara E, MacRae C, Maduro V, Majcherska M, Mak B, Malicdan M, Mamounas L, Manolio T, Mao R, Maravilla K, Markello T, Marom R, Marth G, Martin B, Martin M, Martínez-Agosto J, Marwaha S, McCauley J, McConkie-Rosell A, McCormack C, McCray A, McGee E, Mefford H, Merritt J, Might M, Mirzaa G, Morava E, Moretti P, Morimoto M, Mulvihill J, Murdock D, Nakano-Okuno M, Nath A, Nelson S, Newman J, Nicholas S, Nickerson D, Nieves-Rodriguez S, Novacic D, Oglesbee D, Orengo J, Pace L, Pak S, Pallais J, Palmer C, Papp J, Parker N, Phillips III J, Posey J, Potocki L, Pusey B, Quinlan A, Raskind W, Raja A, Rao D, Renteria G, Reuter C, Rives L, Robertson A, Rodan L, Rosenfeld J, Rosenwasser N, Ruzhnikov M, Sacco R, Sampson J, Samson S, Saporta M, Scott C, Schaechter J, Schedl T, Schoch K, Scott D, Sharma P, Shashi V, Shin J, Signer R, Sillari C, Silverman E, Sinsheimer J, Sisco K, Smith E, Smith K, Solem E, Solnica-Krezel L, Spillmann R, Stoler J, StongJ N, Sullivan E, Sullivan K, Sun A, Sutton S, Sweetser D, Sybert V, Tabor H, Tamburro C, K-GTan Q, Tekin M, Telischi F, Thorson W, Tifft C, Toro C, Tran A, Tucker B, Urv T, Vanderver A, Velinder M, Viskochil D, Vogel T, Wahl C, Wallace S, Walley N, Walsh C, Walker M, Wambach J, Wan J, Wang L, Wangler M, Ward P, Wegner D, Wener M, Wenger T, Perry K, Westerfield M, Wheeler M, Whitlock J, Wolfe L, Woods J, Yamamoto S, Yang J, Yu G, Zastrow D, Zhao C, Zuchner S, Ariani F, Renieri A, Mari F, Wangler M, Arur S, Jiang Y, Yamamoto S, Shashi V, Bellen H. The microRNA processor DROSHA is a candidate gene for a severe progressive neurological disorder. Human Molecular Genetics 2022, 31: 2934-2950. PMID: 35405010, PMCID: PMC9433733, DOI: 10.1093/hmg/ddac085.Peer-Reviewed Original ResearchConceptsWhite matter atrophyProgressive neurological disorderDe novo heterozygous variantsNovo heterozygous variantsProfound intellectual disabilityMatter atrophyNervous systemNeurological disordersHeterozygous variantsDysmorphic featuresMissense variantsSevere phenotypeIntellectual disabilityPhenotype characteristicLoss of DroshaLoss of miRNAMiRNA expressionBrain sizeSevere reductionSevere progressive neurological disorderFunctional studiesCauses lossAtrophyEpilepsyCandidate genes
2014
Assessment of HbF QTLs Affecting Disease Severity and Genetic Analysis in Patients Homozygous for Codon 8 (–AA) β0-Thalassemia Mutation
Jiang Z, Huang S, Luo H, Akar N, Basak A, Al-Allawi N, Unal S, Gumruk F, Davis L, Morrison T, Campbell A, Gallagher P, Forget B, Steinberg M, Chui D. Assessment of HbF QTLs Affecting Disease Severity and Genetic Analysis in Patients Homozygous for Codon 8 (–AA) β0-Thalassemia Mutation. Blood 2014, 124: 2690. DOI: 10.1182/blood.v124.21.2690.2690.Peer-Reviewed Original ResearchQuantitative trait lociGene clusterIntergenic regionHbF quantitative trait lociΓ-globin gene expressionKb intergenic regionSevere phenotypeMild phenotypeHBS1L-MYB intergenic regionΒ-globin gene clusterGenome-wide SNP arraysMild disease phenotypeDisease phenotypeMinor alleleWhole-genome sequencingTrait lociHPFH mutationNovel SNPsGenetic analysisSNP arrayGene expressionΒ-hemoglobinopathiesGenome sequencingQTL genotypesWhole-exome sequencing
1998
Oculocutaneous Albinism
Bolognia J. Oculocutaneous Albinism. 1998, 737-743. DOI: 10.1007/978-1-59259-726-0_79.Chapters
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply