2022
The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation
Miao L, Tang Y, Bonneau AR, Chan SH, Kojima ML, Pownall ME, Vejnar CE, Gao F, Krishnaswamy S, Hendry CE, Giraldez AJ. The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation. Molecular Cell 2022, 82: 986-1002.e9. PMID: 35182480, PMCID: PMC9327391, DOI: 10.1016/j.molcel.2022.01.024.Peer-Reviewed Original ResearchConceptsGenome activationChromatin openingTranscription factorsPioneer factor activityDifferent transcription factorsChromatin reprogrammingPioneer factorsNucleosome positionsActive enhancersIndividual genesCore histonesTriple mutantGene activationTF inputsDevelopmental transitionsSequence contextCell typesFactor activityHistonesPioneering activityEnhancerActivationSequence of eventsPou5f3Chromatin
2020
The Role of Immune Factors in Shaping Fetal Neurodevelopment
Lu-Culligan A, Iwasaki A. The Role of Immune Factors in Shaping Fetal Neurodevelopment. Annual Review Of Cell And Developmental Biology 2020, 36: 1-28. PMID: 32722920, PMCID: PMC9034439, DOI: 10.1146/annurev-cellbio-021120-033518.Peer-Reviewed Original ResearchConceptsMaternal immune activationImmune factorsFetal neurodevelopmentMaternal immunityPoor neurological outcomeMaternal-fetal interfaceNeurological outcomeNormal pregnancyImmune activationImmune pathwaysPostnatal lifeNeurological disordersExperimental modelNeurodevelopmentNormal physiologyPregnancyVivo roleImmunityCritical participantsMaternal pathwayFactorsSequence of eventsPathogenesisUteroFetuses
2012
The Goldilocks Effect: Human Infants Allocate Attention to Visual Sequences That Are Neither Too Simple Nor Too Complex
Kidd C, Piantadosi ST, Aslin RN. The Goldilocks Effect: Human Infants Allocate Attention to Visual Sequences That Are Neither Too Simple Nor Too Complex. PLOS ONE 2012, 7: e36399. PMID: 22649492, PMCID: PMC3359326, DOI: 10.1371/journal.pone.0036399.Peer-Reviewed Original Research
2009
Coordinated Actions of Actin and BAR Proteins Upstream of Dynamin at Endocytic Clathrin-Coated Pits
Ferguson S, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, Destaing O, Ko G, Takasaki J, Cremona O, Toole E, De Camilli P. Coordinated Actions of Actin and BAR Proteins Upstream of Dynamin at Endocytic Clathrin-Coated Pits. Developmental Cell 2009, 17: 811-822. PMID: 20059951, PMCID: PMC2861561, DOI: 10.1016/j.devcel.2009.11.005.Peer-Reviewed Original ResearchConceptsEndocytic roleEndocytic clathrin-coated pitsBAR domain proteinsSense membrane curvatureClathrin-coated pitsWild-type cellsGTPase dynaminEndocytic intermediatesHigher eukaryotesDomain proteinsMembrane fissionActin dynamicsNumerous proteinsDynaminMembrane curvatureProtein upstreamTubular neckConcerted actionProteinActinCoordinated actionKey playersFunctional relationshipCellsSequence of events
2000
Development of Glutamatergic Synaptic Activity in Cultured Spinal Neurons
Robert A, Howe J, Waxman S. Development of Glutamatergic Synaptic Activity in Cultured Spinal Neurons. Journal Of Neurophysiology 2000, 83: 659-670. PMID: 10669482, DOI: 10.1152/jn.2000.83.2.659.Peer-Reviewed Original ResearchMeSH Keywords2-Amino-5-phosphonovalerate6-Cyano-7-nitroquinoxaline-2,3-dioneAnimalsCells, CulturedExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsFetusGlutamic AcidMagnesiumMembrane PotentialsNeuronsPatch-Clamp TechniquesQuinoxalinesRatsRats, Sprague-DawleyReceptors, AMPAReceptors, N-Methyl-D-AspartateSpinal CordSynapsesTetrodotoxinConceptsSpontaneous synaptic activityCultured spinal neuronsSynaptic activitySpinal neuronsGlutamatergic synapsesSynaptic currentsGlutamatergic synaptic activityIsoxazolepropionic acid (AMPA) receptorsSpontaneous synaptic currentsOlder neuronsSynaptic NMDARsExogenous glutamateNMDARAcid receptorsSynaptic regionNeuronsReceptor openingSignificant increaseTime courseSynapsesSequence of eventsActivityWeeksCourseReceptors
1999
Successful vaccination for Lyme disease:a novel mechanism
Thanassi W, Schoen R. Successful vaccination for Lyme disease:a novel mechanism. Expert Opinion On Investigational Drugs 1999, 8: 29-35. PMID: 15992056, DOI: 10.1517/13543784.8.1.29.Peer-Reviewed Original Research
1996
Hepatocyte death following transforming growth factor‐β1 addition
Oberhammer F, Froschl G, Tiefenbacher R, Inayat‐Hussain S, Cain K, Stopper H. Hepatocyte death following transforming growth factor‐β1 addition. Microscopy Research And Technique 1996, 34: 247-258. PMID: 8743412, DOI: 10.1002/(sici)1097-0029(19960615)34:3<247::aid-jemt7>3.0.co;2-m.Peer-Reviewed Original ResearchConceptsHallmark of apoptosisSitu nick translationChromatin condensationDNA strand breaksEpithelial organsCell deathNick translationStrand breaksPrimary hepatocytesUV microscopyMorphological termsApoptosisSitu tailingEpithelial growthPrimary culturesSequence of eventsMorphological detectionHepatocyte deathGrowthHepatocytesSequenceHallmarkHyperplastic liversInductionInhibitors
1988
Temporary adhesions between axons and myelin-forming processes
Sims T, Gilmore S, Waxman S. Temporary adhesions between axons and myelin-forming processes. Brain Research 1988, 40: 223-232. DOI: 10.1016/0165-3806(88)90134-4.Peer-Reviewed Original ResearchSchwann cellsSpinal cordMyelin formationIntraspinal Schwann cellsLumbosacral spinal cordSchwann cell processesMyelination of axonsDorsal funiculusGlial populationsNormal animalsGlial processesAxonsJunctional complexesMarked reductionRat undergoesCordMyelinationInitial contactOligodendrocyte processesAxolemmaPresent studyCellsCell processesEarly stagesSequence of events
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply