2021
Serotonin as a Mitogen in the Gastrointestinal Tract: Revisiting a Familiar Molecule in a New Role
Shah PA, Park CJ, Shaughnessy MP, Cowles RA. Serotonin as a Mitogen in the Gastrointestinal Tract: Revisiting a Familiar Molecule in a New Role. Cellular And Molecular Gastroenterology And Hepatology 2021, 12: 1093-1104. PMID: 34022423, PMCID: PMC8350061, DOI: 10.1016/j.jcmgh.2021.05.008.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsEnteric nervous systemSerotonin receptorsGI tractPotentiation of serotoninInflammatory bowel diseaseVascular smooth muscleIntestinal epithelial proliferationIntestinal crypt cellsBody's serotoninMalabsorptive conditionsIntestinal injuryEnteric neuronsIntestinal motilityBowel diseaseIntestinal inflammationEnterochromaffin cellsGI diseaseSerotonergic neuronsMuscarinic receptorsCholinergic signalingSerotonin synthesisGastrointestinal systemGastrointestinal tractIntestinal mucosaSmooth muscle
2020
Sudden Unexplained Death in Childhood: A Neuropathology Review
McGuone D, Crandall LG, Devinsky O. Sudden Unexplained Death in Childhood: A Neuropathology Review. Frontiers In Neurology 2020, 11: 582051. PMID: 33178125, PMCID: PMC7596260, DOI: 10.3389/fneur.2020.582051.Peer-Reviewed Original ResearchSudden unexpected infant deathSudden unexplained deathMedical historyUnexplained deathLife-threatening hypoxiaMedullary serotonergic neuronsMild pathologic changesThorough case investigationUnexplained child deathsFocal cortical dysplasiaUnexpected infant deathFebrile seizure historyAge 12 monthsCause of mortalityChild's medical historyCircumstances of deathSUDC casesSUID deathsSerotonergic nucleiCardiorespiratory controlCortical dysplasiaHippocampal abnormalitiesSeizure historySerotonergic neuronsReflex responses
2019
Serotonin and neuropeptides are both released by the HSN command neuron to initiate C. elegans egg laying
Brewer JC, Olson AC, Collins KM, Koelle MR. Serotonin and neuropeptides are both released by the HSN command neuron to initiate C. elegans egg laying. PLOS Genetics 2019, 15: e1007896. PMID: 30677018, PMCID: PMC6363226, DOI: 10.1371/journal.pgen.1007896.Peer-Reviewed Original ResearchConceptsHermaphrodite-specific neuronsEgg-laying defectsNLP-3C. elegansEgg-laying musclesEgg-laying circuitDirect postsynaptic targetsEgg-laying behaviorSerotonergic Hermaphrodite Specific NeuronsMuscle cellsSmall molecule neurotransmittersNull mutantsHSN neuronsDouble mutantSingle mutantsMutant animalsSerotonergic neuronsWild-type animalsSevere defectsMutantsElegansNeuropeptide substance PMammalian brainEggsSpecific neurons
2015
A new recipe for serotonergic neurons
Brennand K. A new recipe for serotonergic neurons. Science Translational Medicine 2015, 7 DOI: 10.1126/scitranslmed.aad5908.Commentaries, Editorials and Letters
2012
Receptors and Other Signaling Proteins Required for Serotonin Control of Locomotion in Caenorhabditis elegans
Gürel G, Gustafson MA, Pepper JS, Horvitz HR, Koelle MR. Receptors and Other Signaling Proteins Required for Serotonin Control of Locomotion in Caenorhabditis elegans. Genetics 2012, 192: 1359-1371. PMID: 23023001, PMCID: PMC3512144, DOI: 10.1534/genetics.112.142125.Peer-Reviewed Original ResearchConceptsCaenorhabditis elegansLarge-scale genetic screensSer-4Direct postsynaptic targetsGenetic screenC. elegansSignaling proteinsGenetic systemNon-overlapping setsAdditional proteinsExtrasynaptic signalsMolecular mechanismsElegansSerotonin responseGenesRelease sitesMod 1Multiple receptorsProteinSerotonin controlSerotonergic neuronsPostsynaptic targetsSerotonin functionReceptorsSerotonin receptors
2009
A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure
Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G. A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure. Cell 2009, 138: 976-989. PMID: 19737523, PMCID: PMC2768582, DOI: 10.1016/j.cell.2009.06.051.Peer-Reviewed Original ResearchConceptsSerotonergic neuronsHypothalamic neuronsBone massEnergy expenditureVentromedial hypothalamic neuronsBone mass accrualSerotonin-dependent mechanismRegulation of appetiteEnergy expenditure phenotypesSpecific hypothalamic neuronsHtr2c receptorLeptin deficiencyArcuate neuronsLeptin inhibitionSerotonin synthesisLeptin receptorLeptin regulationLeptinNeuronsAppetiteReceptorsEnergy metabolismBrainBoneMolecular basis
2005
Estrogen enhances light‐induced activation of dorsal raphe serotonergic neurons
Abizaid A, Mezei G, Thanarajasingam G, Horvath TL. Estrogen enhances light‐induced activation of dorsal raphe serotonergic neurons. European Journal Of Neuroscience 2005, 21: 1536-1546. PMID: 15845081, DOI: 10.1111/j.1460-9568.2005.03964.x.Peer-Reviewed Original ResearchConceptsOvariectomized ratsRaphe nucleusDorsal raphe serotonergic neuronsEstradiol-treated ovariectomized ratsAbility of estradiolDouble-labeled cellsFos-immunoreactive cellsRaphe serotonergic neuronsMedian raphe nucleusFos-positive nucleiRaphe nuclei regionMidbrain rapheSerotonin immunocytochemistryOvarian functionSerotonergic neuronsEstrogen treatmentFos immunoreactivitySerotonergic systemFood intakeNeuronal responsesDirect projectionsPhotic stimulationEstradiolEstrogenNormal onset
2000
Neurochemical and electrophysiological studies on the functional significance of burst firing in serotonergic neurons
Gartside S, Hajós-Korcsok É, Bagdy E, Hársing L, Sharp T, Hajós M. Neurochemical and electrophysiological studies on the functional significance of burst firing in serotonergic neurons. Neuroscience 2000, 98: 295-300. PMID: 10854760, DOI: 10.1016/s0306-4522(00)00060-9.Peer-Reviewed Original ResearchConceptsDorsal raphe nucleusSingle-pulse stimulationTwin-pulse stimulationRat medial prefrontal cortexMedial prefrontal cortexRaphe nucleusElectrical stimulationPoststimulus inhibitionPrefrontal cortexAction potentialsFiring patternsDorsal raphe stimulationMidbrain raphe nucleiRat brain slicesVivo extracellular recordingsDirect electrical stimulationEfflux of tritiumRaphe stimulationPostsynaptic effectsSerotonergic neuronsVivo microdialysisCortical neuronsNerve terminalsBrain slicesPostsynaptic neurons
1998
Reduced brain serotonin transporter availability in major depression as measured by [123I]-2β-carbomethoxy-3β-(4-iodophenyl)tropane and single photon emission computed tomography
Malison R, Price L, Berman R, van Dyck C, Pelton G, Carpenter L, Sanacora G, Owens M, Nemeroff C, Rajeevan N, Baldwin R, Seibyl J, Innis R, Charney D. Reduced brain serotonin transporter availability in major depression as measured by [123I]-2β-carbomethoxy-3β-(4-iodophenyl)tropane and single photon emission computed tomography. Biological Psychiatry 1998, 44: 1090-1098. PMID: 9836013, DOI: 10.1016/s0006-3223(98)00272-8.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntidepressive AgentsBrainBrain StemCarrier ProteinsCocaineDepressive DisorderFemaleHumansMaleMembrane GlycoproteinsMembrane Transport ProteinsMiddle AgedNerve Tissue ProteinsParoxetinePsychiatric Status Rating ScalesSerotoninSerotonin Plasma Membrane Transport ProteinsTomography, Emission-Computed, Single-PhotonConceptsDepressed patientsMajor depressionHealthy subjectsBrain serotonin transporter availabilitySerotonin transporterBeta-CIT SPECTDensity of brainPost-mortem brain tissuePathophysiology of depressionSerotonin transporter availabilityUnipolar major depressionBeta-CIT bindingSingle photon emissionSerotonergic neuronsBrain uptakeSERT availabilityTransporter availabilityBeta-CITBrain tissueCarbomethoxy-3βPatientsBlood plateletsDepressionPhoton emissionSignificant reduction
1995
Co-Grafts in Dopamine-Depleted Primates: Preliminary Results and Theoretical Issues Related to Human Applications for Parkinson’s Disease
Sladek J, Elsworth J, Roth R, Blanchard B, Taylor J, Collier T, Redmond D. Co-Grafts in Dopamine-Depleted Primates: Preliminary Results and Theoretical Issues Related to Human Applications for Parkinson’s Disease. Altschul Symposia Series 1995, 219-230. DOI: 10.1007/978-1-4615-1929-4_18.Peer-Reviewed Original ResearchDopamine neuronsDisease patientsHuman dopamine neuronsNon-dopaminergic neuronsVentral mesencephalic graftsParkinson's disease patientsMesencephalic reticular formationHuman neural tissueDaily levodopaHost brainMesencephalic graftsMesencephalic tissueDorsal rapheVentral mesencephalonPatient 1Serotonergic neuronsVentral tegmentumPoor survivalEmbryonic mesencephalonReticular formationTrochlear nucleusRat brainRat striatumTrigeminal complexParkinson's disease
1975
Inhibition of both noradrenergic and serotonergic neurons in brain by the α-adrenergic agonist clonidine
Svensson T, Bunney B, Aghajanian G. Inhibition of both noradrenergic and serotonergic neurons in brain by the α-adrenergic agonist clonidine. Brain Research 1975, 92: 291-306. PMID: 1174954, DOI: 10.1016/0006-8993(75)90276-0.Peer-Reviewed Original ResearchConceptsNE neuronsAgonist clonidineHigh dosesMidbrain dorsal raphe nucleusAlpha-adrenergic agonist clonidineSingle-unit recording techniquesBrain NE neuronsClonidine-induced depressionDorsal raphe nucleusAdrenergic agonist clonidineBrain norepinephrineRaphe neuronsIntravenous clonidineAdrenergic transmissionSerotonergic neuronsDepressant effectDopaminergic neuronsRaphe nucleusSpontaneous firingLocus coeruleusClonidineLow doseL-amphetamineAdrenergic receptorsNeurons
1974
Noradrenergic neurons: Morphine inhibition of spontaneous activity
Korf J, Bunney B, Aghajanian G. Noradrenergic neurons: Morphine inhibition of spontaneous activity. European Journal Of Pharmacology 1974, 25: 165-169. PMID: 4435020, DOI: 10.1016/0014-2999(74)90045-4.Peer-Reviewed Original ResearchConceptsLocus coeruleusMorphine sulfateFiring rateNeuronal activitySpontaneous activityNoradrenergic neuron activityNorepinephrine-containing neuronsNoradrenergic neuronal activityLocus coeruleus cellsSpontaneous firing rateDorsal raphe nucleusAnalgesic actionMorphine inhibitionSerotonergic neuronsRaphe nucleusMorphine antagonistNoxious stimuliNE cellsNeuron activityCoeruleusMorphineNeuronsNaloxoneInhibitionCells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply