2024
De Novo Elastin Assembly Alleviates Development of Supravalvular Aortic Stenosis—Brief Report
Ellis M, Riaz M, Huang Y, Anderson C, Hoareau M, Li X, Luo H, Lee S, Park J, Luo J, Batty L, Huang Q, Lopez C, Reinhardt D, Tellides G, Qyang Y. De Novo Elastin Assembly Alleviates Development of Supravalvular Aortic Stenosis—Brief Report. Arteriosclerosis Thrombosis And Vascular Biology 2024, 44: 1674-1682. PMID: 38752350, PMCID: PMC11209776, DOI: 10.1161/atvbaha.124.320790.Peer-Reviewed Original ResearchSupravalvular aortic stenosisVascular smooth muscle cellsSmooth muscle cellsMuscle cellsAortic stenosisMedial vascular smooth muscle cellsVascular proliferative diseasesEpigallocatechin gallate treatmentProliferative abnormalitiesPreclinical findingsHeart failureLuminal occlusionMouse modelCell hyperproliferationDefective elastinProliferative diseasesCardiovascular disordersFormation of elastinTherapeutic interventionsElastin assemblyElastin depositionStenosisMiceAortic mechanicsImproper formation
2021
Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering
Ellis MW, Riaz M, Huang Y, Anderson CW, Luo J, Park J, Lopez CA, Batty LD, Gibson KH, Qyang Y. Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering. Journal Of Molecular And Cellular Cardiology 2021, 163: 167-174. PMID: 34979103, PMCID: PMC8920537, DOI: 10.1016/j.yjmcc.2021.12.014.Peer-Reviewed Original ResearchConceptsPluripotent stem cellsTissue engineeringStem cell derivativesPluripotent stem cell derivativesInduced pluripotent stem cellsStem cellsGraft productionMechanical strengthExtracellular formationExpression systemCell derivativesVascular smooth muscle cellsElastin fiber formationEngineered graftSmooth muscle cellsFiber formationNotable obstacleLack of elastinMuscle cellsEngineeringClinical applicationVascular graftsCell proliferative capacityElastin productionProliferative capacityMethods for Differentiating hiPSCs into Vascular Smooth Muscle Cells
Li ML, Luo J, Ellis MW, Riaz M, Ajaj Y, Qyang Y. Methods for Differentiating hiPSCs into Vascular Smooth Muscle Cells. Methods In Molecular Biology 2021, 2375: 21-34. PMID: 34591296, DOI: 10.1007/978-1-0716-1708-3_3.Peer-Reviewed Original ResearchConceptsHuman induced pluripotent stem cellsVascular smooth muscle cellsPluripotent stem cellsLateral plate mesodermEarly embryonic developmentStem cellsSmooth muscle cellsHuman pluripotent stem cellsInduced pluripotent stem cellsExtracellular matrix proteinsMuscle cellsMesoderm lineagePlate mesodermEmbryonic developmentVascular cell sourceEmbryoid bodiesEB formationMatrix proteinsCellular interactionsDisease modelingPhysiological characteristicsVascular tissueTissue-engineered vascular graftsCell-based therapiesCell replacementHuman-Induced Pluripotent Stem-Cell-Derived Smooth Muscle Cells Increase Angiogenesis to Treat Hindlimb Ischemia
Gao X, Gao M, Gorecka J, Langford J, Liu J, Luo J, Taniguchi R, Matsubara Y, Liu H, Guo L, Gu Y, Qyang Y, Dardik A. Human-Induced Pluripotent Stem-Cell-Derived Smooth Muscle Cells Increase Angiogenesis to Treat Hindlimb Ischemia. Cells 2021, 10: 792. PMID: 33918299, PMCID: PMC8066461, DOI: 10.3390/cells10040792.Peer-Reviewed Original ResearchConceptsLimb-threatening ischemiaSmooth muscle cellsHindlimb ischemiaFunctional outcomeChronic limb-threatening ischemiaMuscle cellsVascular endothelial growth factor (VEGF) expressionM2-type macrophagesMurine hindlimb ischemia modelNumber of macrophagesGrowth factor expressionLaser Doppler imagingStem cell sourceHindlimb ischemia modelStem cellsConsiderable ethical issuesTranslatable therapyIschemic limbsRenewable stem cell sourcesIschemia modelCapillary densityBlood flowIschemiaNovel treatmentsNude mice
2020
Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering
Luo J, Lin Y, Shi X, Li G, Kural MH, Anderson CW, Ellis MW, Riaz M, Tellides G, Niklason LE, Qyang Y. Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomaterialia 2020, 119: 155-168. PMID: 33130306, PMCID: PMC8168373, DOI: 10.1016/j.actbio.2020.10.042.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringTissue-engineered vascular graftsTissue engineeringComparable mechanical strengthVascular smooth muscle cellsMechanical strengthSmooth muscle cellsPolyglycolic acid scaffoldsTechnology one stepBiodegradable polyglycolic acid (PGA) scaffoldsXenogeneic-free conditionsAnimal-derived reagentsMuscle cellsVSMC differentiationImmunodeficient mouse modelEngineeringVascular graftsOne-stepStem cellsPluripotent stem cellsMouse modelCollagen depositionComparable capacityBlood vesselsAcid scaffoldsInduced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing
Gorecka J, Gao X, Fereydooni A, Dash BC, Luo J, Lee SR, Taniguchi R, Hsia HC, Qyang Y, Dardik A. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing. Regenerative Medicine 2020, 15: 1277-1293. PMID: 32228292, PMCID: PMC7304438, DOI: 10.2217/rme-2019-0086.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsMuscle cellsDiabetic wound healingWound healingPro-angiogenic cytokinesMurine AdiposeStem cellsType macrophagesCollagen scaffoldsCultured mediumM2-type macrophagesCellsNumber of totalNew candidatesAngiogenesisNude miceDiabetic woundsPromising new candidateScaffoldsHealingCytokinesExpressionSecreteWoundsAdipose
2017
Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering
Luo J, Qin L, Kural MH, Schwan J, Li X, Bartulos O, Cong XQ, Ren Y, Gui L, Li G, Ellis MW, Li P, Kotton DN, Dardik A, Pober JS, Tellides G, Rolle M, Campbell S, Hawley RJ, Sachs DH, Niklason LE, Qyang Y. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials 2017, 147: 116-132. PMID: 28942128, PMCID: PMC5638652, DOI: 10.1016/j.biomaterials.2017.09.019.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsSmooth muscle cellsPluripotent stem cellsFunctional vascular smooth muscle cellsMassachusetts General Hospital miniature swineMuscle cellsSelf-assembly approachBiodegradable polyglycolic acid (PGA) scaffoldsPrimary vascular smooth muscle cellsSmooth muscle myosin heavy chainMuscle myosin heavy chainVascular tissue engineeringStem cellsTissue engineeringPolyglycolic acid scaffoldsReprogramming factorsVascular diseaseContractile functionVascular constructsImmunodeficient miceOrgan transplantsMiniature swinePreclinical investigationsGreat potentialMyosin heavy chain
2016
Implantable tissue-engineered blood vessels from human induced pluripotent stem cells
Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G, Niklason LE, Qyang Y. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 2016, 102: 120-129. PMID: 27336184, PMCID: PMC4939127, DOI: 10.1016/j.biomaterials.2016.06.010.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsVascular diseaseBlood vesselsAlpha-smooth muscle actinSmooth muscle myosin heavy chainActive vascular remodelingSmooth muscle cellsMuscle myosin heavy chainTissue-engineered blood vesselsStem cellsAbundant collagenous matrixPluripotent stem cellsInterposition graftAllogeneic graftsVascular remodelingΑ-SMANude ratsMuscle actinMyosin heavy chainClinical useMuscle cellsFunctional vascular smooth muscle cellsPatientsFunctional tissue-engineered blood vesselGraft
2012
Modeling Supravalvular Aortic Stenosis Syndrome With Human Induced Pluripotent Stem Cells
Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim KY, Li W, Amos PJ, Bozkulak EC, Iyer A, Zheng W, Zhao H, Martin KA, Kotton DN, Tellides G, Park IH, Yue L, Qyang Y. Modeling Supravalvular Aortic Stenosis Syndrome With Human Induced Pluripotent Stem Cells. Circulation 2012, 126: 1695-1704. PMID: 22914687, PMCID: PMC3586776, DOI: 10.1161/circulationaha.112.116996.Peer-Reviewed Original ResearchConceptsActin filament bundlesSmooth muscle αSmooth muscle cellsExtracellular signal-regulated kinase 1/2Muscle αFilament bundlesSignal-regulated kinase 1/2Four-nucleotide insertionDisease mechanismsContractile smooth muscle cellsStem cell linesPluripotent stem cellsPluripotent stem cell linePlatelet-derived growth factorRhoA signalingVascular smooth muscle cellsRecombinant proteinsKinase 1/2Elastin geneELN geneWilliams-Beuren syndromeBrdU analysisSupravalvular aortic stenosisStem cellsHigh proliferation rate