Featured Publications
m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity
Qin Y, Li B, Arumugam S, Lu Q, Mankash SM, Li J, Sun B, Li J, Flavell RA, Li HB, Ouyang X. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Reports 2021, 37: 109968. PMID: 34758326, PMCID: PMC8667589, DOI: 10.1016/j.celrep.2021.109968.Peer-Reviewed Original ResearchConceptsNon-alcoholic fatty liver diseaseProgression of NAFLDLineage-restricted deletionFatty liver diseaseMultiple mRNA transcriptsMyeloid cell activationDiet-induced developmentMethyladenosine (m<sup>6</sup>A) RNA modificationMRNA metabolismProtein methyltransferaseLiver diseaseRNA modificationsCellular stressMetabolic reprogrammingDDIT4 mRNACell activationObesityDifferential expressionMammalian targetMRNA transcriptsSignificant downregulationCytokine stimulationPathway activityMetabolic phenotypeMRNA levelsThe DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury
Hu B, Jin C, Li HB, Tong J, Ouyang X, Cetinbas NM, Zhu S, Strowig T, Lam FC, Zhao C, Henao-Mejia J, Yilmaz O, Fitzgerald KA, Eisenbarth SC, Elinav E, Flavell RA. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 2016, 354: 765-768. PMID: 27846608, PMCID: PMC5640175, DOI: 10.1126/science.aaf7532.Peer-Reviewed Original ResearchConceptsCell deathDNA sensor AIM2New therapeutic targetsCaspase-1-dependent deathIntestinal epithelial cellsBone marrow cellsGastrointestinal syndromeTissue injuryInflammasome activationGastrointestinal tractRadiation-induced cell deathRadiation-induced DNA damageTherapeutic targetAcute exposureBone marrowChemotherapeutic agentsMarrow cellsRadiation exposureAIM2Massive cell deathEpithelial cellsHematopoietic failureDeathMolecular mechanismsDNA damage
2022
RNA m6A demethylase ALKBH5 regulates the development of γδ T cells
Ding C, Xu H, Yu Z, Roulis M, Qu R, Zhou J, Oh J, Crawford J, Gao Y, Jackson R, Sefik E, Li S, Wei Z, Skadow M, Yin Z, Ouyang X, Wang L, Zou Q, Su B, Hu W, Flavell RA, Li HB. RNA m6A demethylase ALKBH5 regulates the development of γδ T cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2203318119. PMID: 35939687, PMCID: PMC9388086, DOI: 10.1073/pnas.2203318119.Peer-Reviewed Original ResearchConceptsDemethylase ALKBH5Messenger RNAΓδ T cellsΓδ T cell biologyCommon posttranscriptional modificationΓδ T cell developmentT cell biologyT cell developmentCell precursorsT cell precursorsMammalian cellsRNA modificationsPosttranscriptional modificationsTissue homeostasisCell biologyT cellsTarget genesCheckpoint roleCell developmentM6A demethylase ALKBH5ALKBH5Γδ T-cell originΓδ T cell repertoireCell populationsEarly development
2019
Inflammasome Is Activated in the Liver of Cholestatic Patients and Aggravates Hepatic Injury in Bile Duct–Ligated Mouse
Cai SY, Ge M, Mennone A, Hoque R, Ouyang X, Boyer JL. Inflammasome Is Activated in the Liver of Cholestatic Patients and Aggravates Hepatic Injury in Bile Duct–Ligated Mouse. Cellular And Molecular Gastroenterology And Hepatology 2019, 9: 679-688. PMID: 31887435, PMCID: PMC7160576, DOI: 10.1016/j.jcmgh.2019.12.008.Peer-Reviewed Original ResearchConceptsWT BDL miceCholestatic liver injuryBDL liversBDL miceBile duct ligationBile acidsLiver injuryCholestatic patientsIL-1βM2 anti-inflammatory macrophagesPrimary sclerosing cholangitisPlasma IL-1βLiver hydroxyproline contentLiver of patientsPrimary biliary cholangitisHealthy control subjectsCD206-positive cellsAnti-inflammatory macrophagesIL-1β inductionEndogenous bile acidsCaspase-1 cleavageProcaspase-1 cleavageMouse hepatocytesSclerosing cholangitisLiver histology
2017
An endoplasmic reticulum protein, Nogo‐B, facilitates alcoholic liver disease through regulation of kupffer cell polarization
Park J, Shao M, Kim MY, Baik SK, Cho MY, Utsumi T, Satoh A, Ouyang X, Chung C, Iwakiri Y. An endoplasmic reticulum protein, Nogo‐B, facilitates alcoholic liver disease through regulation of kupffer cell polarization. Hepatology 2017, 65: 1720-1734. PMID: 28090670, PMCID: PMC5397326, DOI: 10.1002/hep.29051.Peer-Reviewed Original ResearchConceptsAlcoholic liver diseasePositive Kupffer cellsKupffer cellsLiver injuryALD patientsLiver diseaseM1 polarizationKO miceM2 polarizationLieber-DeCarli ethanol liquid dietDisease severityM1/M2 polarizationKupffer cell polarizationEthanol liquid dietHepatic triglyceride levelsM2 macrophage polarizationHigher hepatic triglyceride levelsChronic ethanol feedingNew therapeutic targetsER stressAbsence of NogoM2 statusWT miceM1 activationTriglyceride levelsBile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response
Cai SY, Ouyang X, Chen Y, Soroka CJ, Wang J, Mennone A, Wang Y, Mehal WZ, Jain D, Boyer JL. Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight 2017, 2: e90780. PMID: 28289714, PMCID: PMC5333973, DOI: 10.1172/jci.insight.90780.Peer-Reviewed Original ResearchConceptsLiver injuryInflammatory responseBile acid-induced liver injuryCholestatic liver injuryInflammatory liver injuryProinflammatory cytokine expressionCholestatic liver diseaseBile duct ligationVivo mouse modelHepatic infiltrationInflammatory injurySerum aminotransferasesLiver diseaseCholestatic patientsCytokine expressionChemokine inductionPathophysiologic concentrationsNeutrophil chemotaxisDuct ligationPathophysiologic levelsMouse modelNew therapiesInnate immunityInjuryPeriportal areas
2016
The SGLT‐2 Inhibitor Dapagliflozin Has a Therapeutic Effect on Atherosclerosis in Diabetic ApoE−/− Mice
Leng W, Ouyang X, Lei X, Wu M, Chen L, Wu Q, Deng W, Liang Z. The SGLT‐2 Inhibitor Dapagliflozin Has a Therapeutic Effect on Atherosclerosis in Diabetic ApoE−/− Mice. Mediators Of Inflammation 2016, 2016: 6305735. PMID: 28104929, PMCID: PMC5220517, DOI: 10.1155/2016/6305735.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaApolipoproteins EAtherosclerosisBenzhydryl CompoundsBlood GlucoseBone MarrowDiabetes ComplicationsDiabetes Mellitus, ExperimentalGlucoseGlucosidesInflammasomesInterleukin-18Interleukin-1betaMacrophagesMaleMiceMice, Inbred C57BLMice, KnockoutNLR Family, Pyrin Domain-Containing 3 ProteinReactive Oxygen SpeciesSodium-Glucose Transporter 2Sodium-Glucose Transporter 2 InhibitorsConceptsEffect of dapagliflozinHigh-fat dietIL-1Dapagliflozin treatmentDiabetic atherosclerosisInhibitor dapagliflozinIL-18Reactive oxygen speciesSodium-glucose cotransporter 2 inhibitor dapagliflozinFat metabolismSGLT-2 inhibitor dapagliflozinCaspase-1 pathwayIndices of glucoseHematoxylin-eosin stainingStability of lesionsFormation of atherosclerosisNLRP3 protein levelsOil Red ODiabetic ApoEROS-NLRP3Aortic atherosclerosisMacrophage infiltrationNLRP3 inflammasomeTherapeutic effectMitochondrial reactive oxygen species
2015
Na+/H+ exchanger regulatory factor 1 knockout mice have an attenuated hepatic inflammatory response and are protected from cholestatic liver injury
Li M, Mennone A, Soroka CJ, Hagey LR, Ouyang X, Weinman EJ, Boyer JL. Na+/H+ exchanger regulatory factor 1 knockout mice have an attenuated hepatic inflammatory response and are protected from cholestatic liver injury. Hepatology 2015, 62: 1227-1236. PMID: 26108984, PMCID: PMC4589453, DOI: 10.1002/hep.27956.Peer-Reviewed Original ResearchConceptsBile duct ligationLiver injuryInflammatory responseICAM-1BDL miceBDL-induced liver injuryNeutrophil-mediated liver injuryTotal bile acid concentrationTumor necrosis factor alphaIntercellular adhesion molecule-1Hepatic neutrophil accumulationAttenuated liver injuryCholestatic liver injuryHepatic inflammatory responseMouse liverSerum alanine aminotransferaseBile acid concentrationsHepatic inflammatory diseasesICAM-1 expressionNecrosis factor alphaAdhesion molecule-1Wild-type miceICAM-1 proteinNew therapeutic targetsMessenger RNA levels
2014
Effect of osteopontin in regulating bone marrow mesenchymal stem cell treatment of skin wounds in diabetic mice
Meng H, Wang Z, Wang W, Li W, Wu Q, Lei X, Ouyang X, Liang Z. Effect of osteopontin in regulating bone marrow mesenchymal stem cell treatment of skin wounds in diabetic mice. Diabetes/Metabolism Research And Reviews 2014, 30: 457-466. PMID: 24827928, DOI: 10.1002/dmrr.2566.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MovementCells, CulturedDiabetes Mellitus, ExperimentalFetal Stem CellsGreen Fluorescent ProteinsMaleMesenchymal Stem Cell TransplantationMesenchymal Stem CellsMice, Inbred C57BLMice, KnockoutMice, TransgenicMicrovesselsNeovascularization, PhysiologicOsteopontinRandom AllocationRecombinant Fusion ProteinsSkinWound HealingWounds, PenetratingConceptsWT mesenchymal stem cellsMesenchymal stem cellsHealing timeNormal miceDiabetic miceSkin woundsBone marrow mesenchymal stem cell treatmentMesenchymal stem cell treatmentStem cellsWestern blottingHealing woundsKO male miceWild-type miceWounds of miceDiabetic skin woundsRole of osteopontinStem cell treatmentEffect of osteopontinExpression of osteopontinBacks of miceDiabetes mellitusIntraperitoneal injectionMale miceMicrovessel densityTail veinImmune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis
Morales C, Rachidi S, Hong F, Sun S, Ouyang X, Wallace C, Zhang Y, Garret-Mayer E, Wu J, Liu B, Li Z. Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis. Cancer Research 2014, 74: 446-459. PMID: 24322981, PMCID: PMC4002507, DOI: 10.1158/0008-5472.can-13-1677.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow CellsCell Transformation, NeoplasticColitisColonColonic NeoplasmsCrosses, GeneticCytokinesDisease ProgressionDNA RepairGene DeletionGene Expression Regulation, NeoplasticInflammationInterleukin-17Interleukin-23MacrophagesMaleMembrane GlycoproteinsMiceMice, KnockoutMucous MembraneConceptsDNA repair machineryDNA repair pathwaysColon tumorigenesisTumor-associated macrophagesRepair machineryRepair pathwaysOncogenic programEndoplasmic reticulumMutation rateChaperone gp96Β-cateninColon cancerMechanistic underpinningsCellular sitesTumorigenesisReduced expressionEpithelial cellsGenotoxic natureToll-like receptorsInflammation-associated colon cancerImportant driverGp96Inflammation-associated colon tumorigenesisCritical inflammatory cytokinesExpression
2011
Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation
Ouyang X, Zhang R, Yang J, Li Q, Qin L, Zhu C, Liu J, Ning H, Shin MS, Gupta M, Qi CF, He JC, Lira SA, Morse HC, Ozato K, Mayer L, Xiong H. Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation. Nature Communications 2011, 2: 314. PMID: 21587231, PMCID: PMC3112536, DOI: 10.1038/ncomms1311.Peer-Reviewed Original ResearchConceptsTh17 cell differentiationRegulatory factor familyTranscription factor IRF8T cell-specific deletionCritical roleFunctional diversityLineage commitmentTranscription factorsCell-specific deletionFactor familyTranscriptional inhibitorIRF8 geneMolecular mechanismsCell differentiationConventional knockoutIRF8IRF8 deficiencyPhysical interactionDifferentiationTh17 cellsPathogenesis of autoimmunityCellsGenesUnique subsetDiversity
2009
AP-1 Activated by Toll-like Receptors Regulates Expression of IL-23 p19*
Liu W, Ouyang X, Yang J, Liu J, Li Q, Gu Y, Fukata M, Lin T, He JC, Abreu M, Unkeless JC, Mayer L, Xiong H. AP-1 Activated by Toll-like Receptors Regulates Expression of IL-23 p19*. Journal Of Biological Chemistry 2009, 284: 24006-24016. PMID: 19592489, PMCID: PMC2781995, DOI: 10.1074/jbc.m109.025528.Peer-Reviewed Original ResearchMeSH KeywordsActivating Transcription Factor 2AnimalsAutoimmune DiseasesCell LineDendritic CellsGene Expression RegulationInterleukin-10Interleukin-23 Subunit p19LipopolysaccharidesMacrophages, PeritonealMAP Kinase Signaling SystemMiceMice, KnockoutMitogen-Activated Protein Kinase KinasesMutationMyeloid Differentiation Factor 88NF-kappa BProto-Oncogene Proteins c-junResponse ElementsToll-Like Receptor 4Transcription Factor AP-1ConceptsIL-23 p19Toll-like receptorsP19 expressionIL-10-deficient miceNF-kappaBMyD88-dependent Toll-like receptorIL-23 expressionRecombinant IL-10IL-12 familyC-JunWild-type miceAP-1 siteC-Fos bindsAP-1Promoter activationIL-23IL-10Dendritic cellsMyD88 pathwayAutoimmune diseasesImmune responseInflammatory signalsType miceLipopolysaccharide (LPS) stimulationNF-kappaB.
2008
A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity
Negishi H, Osawa T, Ogami K, Ouyang X, Sakaguchi S, Koshiba R, Yanai H, Seko Y, Shitara H, Bishop K, Yonekawa H, Tamura T, Kaisho T, Taya C, Taniguchi T, Honda K. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 20446-20451. PMID: 19074283, PMCID: PMC2629334, DOI: 10.1073/pnas.0810372105.Peer-Reviewed Original ResearchConceptsToll-like receptor 3Toll-like receptorsType II IFNImmune responseNucleic acid-sensing Toll-like receptorsReceptor 3Innate antiviral immune responseAntiviral innate immune responseTLR3-deficient miceType I IFN responseAntiviral immune responseAntiviral innate immunityInnate immune responseI IFN responseInnate antiviral immunityType II interferonAcute myocarditisVirus infectionAntiviral immunityI IFNMouse resistanceInnate immunityTypes of virusesIFN responseIFNInterleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells
Gu Y, Yang J, Ouyang X, Liu W, Li H, Yang J, Bromberg J, Chen S, Mayer L, Unkeless JC, Xiong H. Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells. European Journal Of Immunology 2008, 38: 1807-1813. PMID: 18506885, PMCID: PMC2733944, DOI: 10.1002/eji.200838331.Peer-Reviewed Original ResearchEpstein‐Barr virus‐induced gene 3 negatively regulates IL‐17, IL‐22 and RORγt
Yang J, Yang M, Htut TM, Ouyang X, Hanidu A, Li X, Sellati R, Jiang H, Zhang S, Li H, Zhao J, Ting AT, Mayer L, Unkeless JC, Labadia ME, Hodge M, Li J, Xiong H. Epstein‐Barr virus‐induced gene 3 negatively regulates IL‐17, IL‐22 and RORγt. European Journal Of Immunology 2008, 38: 1204-1214. PMID: 18412165, PMCID: PMC2989250, DOI: 10.1002/eji.200838145.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD4-Positive T-LymphocytesCell DifferentiationForkhead Transcription FactorsGene ExpressionGene Expression RegulationInterferon-gammaInterleukin-17InterleukinsListeria monocytogenesListeriosisMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMinor Histocompatibility AntigensNuclear Receptor Subfamily 1, Group F, Member 3OvalbuminReceptors, Antigen, T-CellReceptors, Retinoic AcidReceptors, Thyroid HormoneSpleenT-LymphocytesT-Lymphocytes, RegulatoryTumor Necrosis Factor-alphaConceptsIL-17IL-22Th17 cellsIL-27Spleen cellsRORgamma tEpstein-Barr virus-induced gene 3IL-17-producing cellsReduced bacterial loadIL-35Protective immunityIL-12p35Th17 conditionsAdaptive immunityEBI3Mouse studiesL. monocytogenesBacterial loadMiceElevated levelsAcute challengeGene 3High levelsP28Immunity
2006
Evidence for licensing of IFN-γ-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program
Negishi H, Fujita Y, Yanai H, Sakaguchi S, Ouyang X, Shinohara M, Takayanagi H, Ohba Y, Taniguchi T, Honda K. Evidence for licensing of IFN-γ-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 15136-15141. PMID: 17018642, PMCID: PMC1586247, DOI: 10.1073/pnas.0607181103.Peer-Reviewed Original ResearchConceptsTranscription factorsTarget genesIFN regulatory factor (IRF) familyToll-like receptorsFactor-1 transcription factorRegulatory factor familyIFN-gammaTransduction pathwaysFactor familyTLR-MyD88 pathwayAdditional membersMicrobial componentsIRF1Mechanistic insightsMyD88 adaptorInducible NO synthaseGenesCritical roleTLR signalingPathwayIL-12p35TLR activationNO synthaseIFN-betaMyD88