2006
Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells
Cheng X, Jaggar J. Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells. AJP Heart And Circulatory Physiology 2006, 290: h2309-h2319. PMID: 16428350, PMCID: PMC1698957, DOI: 10.1152/ajpheart.01226.2005.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBariumCadmiumCalcium SignalingCaveolin 1ElectrophysiologyEnzyme InhibitorsFluorescent DyesFura-2IndolesMiceMice, KnockoutMicroscopy, ConfocalMicroscopy, ElectronMuscle, Smooth, VascularMyocytes, Smooth MuscleNitroargininePatch-Clamp TechniquesRyanodine Receptor Calcium Release ChannelConceptsCerebral artery smooth muscle cellsSmooth muscle cellsArtery smooth muscle cellsMuscle cellsMurine arterial smooth muscle cellsGenetic ablationNitric oxide synthase activityVoltage-dependent calcium channelsArterial smooth muscle cellsOxide synthase activitySmooth muscle contractilityChannel blockersMuscle contractilityCalcium channelsCav-1-deficient cellsSpark regulationL-typeElevated intracellularSpark frequencyPotassium channelsSarcoplasmic reticulumCurrent activationCav-1Control cellsRelease channel
2002
Carbon Monoxide Dilates Cerebral Arterioles by Enhancing the Coupling of Ca2+ Sparks to Ca2+-Activated K+ Channels
Jaggar J, Leffler C, Cheranov S, Tcheranova D, E S, Cheng X. Carbon Monoxide Dilates Cerebral Arterioles by Enhancing the Coupling of Ca2+ Sparks to Ca2+-Activated K+ Channels. Circulation Research 2002, 91: 610-617. PMID: 12364389, DOI: 10.1161/01.res.0000036900.76780.95.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArteriolesCalcium Channel BlockersCalcium SignalingCarbon MonoxideCells, CulturedCerebral ArteriesCulture TechniquesElectric ConductivityHemeKineticsLysineMuscle, Smooth, VascularPotassium Channels, Calcium-ActivatedRyanodineRyanodine Receptor Calcium Release ChannelSignal TransductionSwineVasodilationVasodilator AgentsConceptsCerebral arteriolesArteriole smooth muscle cellsRelease channel blockerSmooth muscle cellsLarge-conductance Ca2Ryanodine-sensitive Ca2Enzyme heme oxygenasePial arteriolesCerebral circulationChannel blockersCoupling of Ca2Cellular signaling mechanismsPotent effectsArteriolesMuscle cellsHeme oxygenaseVasodilatorsPotent activatorControl conditionDilationPresent studySignaling mechanismCa2Source of controversyPercentage of Ca2
2001
Inhibition of Ryanodine Binding to Sarcoplasmic Reticulum Vesicles of Cardiac Muscle by Zn2+ Ions
Wang H, Wei Q, Cheng X, Chen K, Zhu P. Inhibition of Ryanodine Binding to Sarcoplasmic Reticulum Vesicles of Cardiac Muscle by Zn2+ Ions. Cellular Physiology And Biochemistry 2001, 11: 83-92. PMID: 11275686, DOI: 10.1159/000047795.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCattleDithiothreitolMyocardiumProtein IsoformsRyanodineRyanodine Receptor Calcium Release ChannelSarcoplasmic ReticulumZincConceptsInhibitory effectCardiac muscleModulators of RyRSarcoplasmic reticulumSkeletal muscleSarcoplasmic reticulum vesiclesMuscleScatchard analysisRyanodine receptorRyanodine bindingRyRsThiol-reducing agentsPhysiological significanceReticulum vesiclesHill coefficientObvious changeActivation siteMM dithiothreitol
2000
Biphasic modulation of ryanodine binding to sarcoplasmic reticulum vesicles of skeletal muscle by Zn2+ ions
XIA R, CHENG X, Hui W, CHEN K, WEI Q, ZHANG X, ZHU P. Biphasic modulation of ryanodine binding to sarcoplasmic reticulum vesicles of skeletal muscle by Zn2+ ions. Biochemical Journal 2000, 345: 279-286. PMID: 10620505, PMCID: PMC1220757, DOI: 10.1042/bj3450279.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine MonophosphateAllosteric RegulationAnimalsCaffeineCalciumDithiothreitolMagnesiumRabbitsRyanodineRyanodine Receptor Calcium Release ChannelSarcoplasmic ReticulumZincConceptsSarcoplasmic reticulum vesiclesReticulum vesiclesBiphasic modulationSkeletal muscle ryanodine receptorPeak bindingInhibitory effectMuscle ryanodine receptorHeavy sarcoplasmic reticulum vesiclesSkeletal muscleScatchard analysisRyanodine receptorBiphasic time courseRyanodine bindingTime courseMicroMThiol-reducing agentsPhysiological significanceInactivation site