2024
Abundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula–interpeduncular nucleus pathway in mice
Tsuzuki A, Yamasaki M, Konno K, Miyazaki T, Takei N, Tomita S, Yuzaki M, Watanabe M. Abundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula–interpeduncular nucleus pathway in mice. Scientific Reports 2024, 14: 14193. PMID: 38902419, PMCID: PMC11189931, DOI: 10.1038/s41598-024-65076-3.Peer-Reviewed Original ResearchConceptsMHb-IPN pathwayMHb neuronsNicotine dependenceNicotinic acetylcholine receptorsAcetylcholine receptorsNicotine-related behaviorsCell surfaceImmunoelectron microscopySubunitAxonal compartmentFunctional roleNeurotransmitter releasePresynaptic terminalsSubcellular expressionPathwaySimultaneous detectionDistribution patternsSynaptic junctionsNAChRsAnatomical basisExpressionNegative controlReceptorsNeuronsAntibodies
2019
Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation
McCarroll MN, Gendelev L, Kinser R, Taylor J, Bruni G, Myers-Turnbull D, Helsell C, Carbajal A, Rinaldi C, Kang HJ, Gong JH, Sello JK, Tomita S, Peterson RT, Keiser MJ, Kokel D. Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nature Communications 2019, 10: 4078. PMID: 31501447, PMCID: PMC6733874, DOI: 10.1038/s41467-019-11936-w.Peer-Reviewed Original ResearchConceptsParadoxical excitationGABAA receptorsCentral nervous system depressantsSerotonin 6 receptorMost anesthetic drugsDifferent neuronal targetsHuman GABAA receptorsNeuronal targetsNeuronal activityAnesthetic drugsMotor activitySerotonin receptor ligandsSedationReceptor ligandsReceptorsCaudal hindbrainAnestheticsPrimary targetPrevious studiesGABATargetNeuronsActivityBrain
2018
Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition
Chiu CQ, Martenson JS, Yamazaki M, Natsume R, Sakimura K, Tomita S, Tavalin SJ, Higley MJ. Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition. Neuron 2018, 97: 368-377.e3. PMID: 29346754, PMCID: PMC5777295, DOI: 10.1016/j.neuron.2017.12.032.Peer-Reviewed Original ResearchConceptsDendritic inhibitionInput-specific long-term potentiationNMDA-type glutamate receptorsGABAergic inhibitory synapsesSomatostatin-expressing interneuronsGABA-A receptorsNormal brain functionLong-term potentiationForms of plasticityHomeostatic cellular mechanismsGABAergic inhibitionSynaptic excitationPerisomatic inhibitionPostsynaptic spikingInhibitory synapsesLong-term plasticityGlutamate receptorsInhibitory inputsSynaptic transmissionDependent potentiationCortical circuitsGenetic deletionBrain functionNeuronal dendritesCellular mechanisms
2017
Assembly rules for GABAA receptor complexes in the brain
Martenson JS, Yamasaki T, Chaudhury NH, Albrecht D, Tomita S. Assembly rules for GABAA receptor complexes in the brain. ELife 2017, 6: e30826. PMID: 28816653, PMCID: PMC5577914, DOI: 10.7554/elife.27443.Peer-Reviewed Original ResearchGARLH Family Proteins Stabilize GABAA Receptors at Synapses
Yamasaki T, Hoyos-Ramirez E, Martenson JS, Morimoto-Tomita M, Tomita S. GARLH Family Proteins Stabilize GABAA Receptors at Synapses. Neuron 2017, 93: 1138-1152.e6. PMID: 28279354, PMCID: PMC5347473, DOI: 10.1016/j.neuron.2017.02.023.Peer-Reviewed Original ResearchConceptsInhibitory transmissionSynaptic transmissionSynaptic localizationInhibitory synaptic transmissionFast inhibitory transmissionFast synaptic transmissionIonotropic neurotransmitter receptorsLigand-gated ion channelsAuxiliary subunitsGABAA receptorsIonotropic GABANeurotransmitter receptorsNeuroligin-2GABAReceptorsAnion channelIon channelsBrainHippocampusFindingsSynapses
2016
CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory
Park J, Chávez AE, Mineur YS, Morimoto-Tomita M, Lutzu S, Kim KS, Picciotto MR, Castillo PE, Tomita S. CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory. Neuron 2016, 92: 75-83. PMID: 27667007, PMCID: PMC5059846, DOI: 10.1016/j.neuron.2016.09.002.Peer-Reviewed Original ResearchConceptsCaMKII phosphorylation siteCaMKII substratePhosphorylation sitesDependent protein kinase IIProtein kinase IIReceptor-dependent activationNMDA receptor-dependent activationProtein phosphorylationAMPAR-mediated transmissionKinase IICaMKII-dependent enhancementLong-term potentiationCaMKII phosphorylationCellular mechanismsPhosphorylationMolecular targetsAMPA receptorsCrucial mediatorSynaptic plasticityMemory formationSynaptic insertionEssential stepSynaptic transmissionActivity-dependent strengtheningBasal transmission
2014
Synaptic localization of neurotransmitter receptors: comparing mechanisms for AMPA and GABAA receptors
Martenson JS, Tomita S. Synaptic localization of neurotransmitter receptors: comparing mechanisms for AMPA and GABAA receptors. Current Opinion In Pharmacology 2014, 20: 102-108. PMID: 25529200, PMCID: PMC4318715, DOI: 10.1016/j.coph.2014.11.011.Peer-Reviewed Original ResearchConceptsSynaptic localizationBasal transmissionGABAA receptorsSynaptic transmissionAMPA receptorsNeurotransmitter receptorsSynaptic plasticityFast synaptic transmissionMultiple receptor subunitsIonotropic neurotransmitter receptorsSynaptic insertionReceptor numberReceptor subunitsReceptorsPrecise mechanismReceptor propertiesAuxiliary subunitsTARP auxiliary subunitsRecent findingsDistinct mechanismsAMPAPostsynapsesPlasticitySynapsesPharmacology
2013
Cornichons Control ER Export of AMPA Receptors to Regulate Synaptic Excitability
Brockie PJ, Jensen M, Mellem JE, Jensen E, Yamasaki T, Wang R, Maxfield D, Thacker C, Hoerndli F, Dunn PJ, Tomita S, Madsen DM, Maricq AV. Cornichons Control ER Export of AMPA Receptors to Regulate Synaptic Excitability. Neuron 2013, 80: 129-142. PMID: 24094107, PMCID: PMC3795439, DOI: 10.1016/j.neuron.2013.07.028.Peer-Reviewed Original ResearchConceptsGlutamatergic synaptic transmissionGlutamate-gated currentsNervous system functionIonotropic glutamate receptorsC. elegansER exportSynaptic excitabilityCargo adaptorsTransgenic wormsGenetic approachesOpposite phenotypeCornichon ProteinsGlutamate receptorsSynaptic transmissionAgonist AMPAHeterologous cellsAMPA receptorsCentral synapsesAMPAR numberSynaptic communicationReconstitution studiesHomeostatic Control of Synaptic Transmission by Distinct Glutamate Receptors
Yan D, Yamasaki M, Straub C, Watanabe M, Tomita S. Homeostatic Control of Synaptic Transmission by Distinct Glutamate Receptors. Neuron 2013, 78: 687-699. PMID: 23719165, PMCID: PMC3668311, DOI: 10.1016/j.neuron.2013.02.031.Peer-Reviewed Original ResearchConceptsKainate receptor activityGlutamate receptorsReceptor activitySynaptic transmissionNeuronal activityHigh-affinity kainate receptor subunitKainate receptor-mediated currentsDistinct glutamate receptorsReceptor-mediated currentsAMPA receptor activitySynaptic AMPA receptorsPostsynaptic glutamate receptorsKainate receptor subunitsAbundant excitatory neurotransmitterCerebellar granule cellsReceptor channel propertiesExcitatory neurotransmitterNMDA receptorsAMPA receptorsGranule cellsReceptor subunitsReceptorsSpike generationHomeostatic controlGluK5 subunits
2011
PDZ binding of TARPγ-8 controls synaptic transmission but not synaptic plasticity
Sumioka A, Brown TE, Kato AS, Bredt DS, Kauer JA, Tomita S. PDZ binding of TARPγ-8 controls synaptic transmission but not synaptic plasticity. Nature Neuroscience 2011, 14: 1410-1412. PMID: 22002768, PMCID: PMC3206644, DOI: 10.1038/nn.2952.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnimalsAnimals, NewbornBiophysicsCalcium ChannelsDisks Large Homolog 4 ProteinElectric StimulationGene Expression Regulation, DevelopmentalGuanylate KinasesHippocampusIn Vitro TechniquesLong-Term PotentiationMembrane ProteinsMiceMice, TransgenicModels, BiologicalMutationNeuronal PlasticityPatch-Clamp TechniquesPDZ DomainsSynaptic TransmissionSynaptophysinSynaptosomesDistinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1
Straub C, Hunt DL, Yamasaki M, Kim KS, Watanabe M, Castillo PE, Tomita S. Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1. Nature Neuroscience 2011, 14: 866-873. PMID: 21623363, PMCID: PMC3125417, DOI: 10.1038/nn.2837.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBiophysical PhenomenaBiophysicsCA1 Region, HippocampalCell Line, TransformedCerebellumDisks Large Homolog 4 ProteinDizocilpine MaleateDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression RegulationGreen Fluorescent ProteinsGuanylate KinasesHumansImmunoprecipitationIn Vitro TechniquesIntracellular Signaling Peptides and ProteinsKainic AcidLDL-Receptor Related ProteinsLipoproteins, LDLMembrane PotentialsMembrane ProteinsMiceMice, KnockoutNeuronsPatch-Clamp TechniquesPresynaptic TerminalsProtein BindingProtein SubunitsReceptors, Kainic AcidReceptors, N-Methyl-D-AspartateSynaptophysinTransfectionTritium
2010
Hippocampal AMPA Receptor Gating Controlled by Both TARP and Cornichon Proteins
Kato AS, Gill MB, Ho MT, Yu H, Tu Y, Siuda ER, Wang H, Qian YW, Nisenbaum ES, Tomita S, Bredt DS. Hippocampal AMPA Receptor Gating Controlled by Both TARP and Cornichon Proteins. Neuron 2010, 68: 1082-1096. PMID: 21172611, PMCID: PMC3034222, DOI: 10.1016/j.neuron.2010.11.026.Peer-Reviewed Original ResearchConceptsTransmembrane AMPA receptor regulatory proteinsAMPA receptor complexesHippocampal neuronsAMPA receptorsCornichon ProteinsReceptor complexAMPA receptor traffickingReceptor regulatory proteinsGlutamate applicationKnockout miceTARP γReceptor pharmacologyCNIH-2Electrophysiological propertiesPostsynaptic densityAMPA receptor gatingSubunit combinationsProtein levelsResensitizationReceptor traffickingNeuronsPharmacologyReceptorsReceptor gatingRecombinant systemsTARP Phosphorylation Regulates Synaptic AMPA Receptors through Lipid Bilayers
Sumioka A, Yan D, Tomita S. TARP Phosphorylation Regulates Synaptic AMPA Receptors through Lipid Bilayers. Neuron 2010, 66: 755-767. PMID: 20547132, PMCID: PMC2887694, DOI: 10.1016/j.neuron.2010.04.035.Peer-Reviewed Original ResearchConceptsAMPA receptor activityTransmembrane AMPA receptor regulatory proteinsReceptor activityGlutamate receptorsSynaptic transmissionAMPA receptorsAMPA receptor-mediated synaptic transmissionPredominant excitatory neurotransmitter receptorsReceptor-mediated synaptic transmissionAMPA-type glutamate receptorsSynaptic AMPA receptorsFast synaptic transmissionIonotropic glutamate receptorsExcitatory neurotransmitter receptorsReceptor regulatory proteinsNeuronal activityNeurotransmitter receptorsPSD-95Synaptic strengthNeural circuitsReceptorsPhosphorylation-dependent mannerStargazinSynapsesTarp phosphorylation
2009
A Transmembrane Accessory Subunit that Modulates Kainate-Type Glutamate Receptors
Zhang W, St-Gelais F, Grabner CP, Trinidad JC, Sumioka A, Morimoto-Tomita M, Kim KS, Straub C, Burlingame AL, Howe JR, Tomita S. A Transmembrane Accessory Subunit that Modulates Kainate-Type Glutamate Receptors. Neuron 2009, 61: 385-396. PMID: 19217376, PMCID: PMC2803770, DOI: 10.1016/j.neuron.2008.12.014.Peer-Reviewed Original ResearchConceptsKainate-type glutamate receptorsGlutamate receptorsIonotropic glutamate receptorsKainate receptorsSynaptic transmissionSurface expressionNative kainate receptorsFast synaptic transmissionKainate receptor subunitsBrain-specific proteinsExcitatory transmissionNMDA receptorsAMPA receptorsReceptor subunitsReceptorsProtein levelsNETO2Auxiliary subunitsTARP auxiliary subunitsBrainVertebrate brainKainate receptor GluR6Proteomic screenMajor roleMEPSCs
2001
PDZ Protein Interactions Regulating Glutamate Receptor Function and Plasticity
Tomita S, Nicoll R, Bredt D. PDZ Protein Interactions Regulating Glutamate Receptor Function and Plasticity. Journal Of Cell Biology 2001, 153: f19-f24. PMID: 11381098, PMCID: PMC2174328, DOI: 10.1083/jcb.153.5.f19.Peer-Reviewed Original Research
2000
Regulation of X11L-dependent Amyloid Precursor Protein Metabolism by XB51, a Novel X11L-binding Protein*
Lee D, Tomita S, Kirino Y, Suzuki T. Regulation of X11L-dependent Amyloid Precursor Protein Metabolism by XB51, a Novel X11L-binding Protein*. Journal Of Biological Chemistry 2000, 275: 23134-23138. PMID: 10833507, DOI: 10.1074/jbc.c000302200.Peer-Reviewed Original ResearchOverexpression of Human Amyloid Precursor Protein in Drosophila
Yagi Y, Tomita S, Nakamura M, Suzuki T. Overexpression of Human Amyloid Precursor Protein in Drosophila. Archives Of Biochemistry And Biophysics 2000, 4: 43-49. PMID: 11152627, DOI: 10.1006/mcbr.2000.0248.Peer-Reviewed Original ResearchConceptsHuman APPHuman amyloid precursor proteinAPP expression levelsExpression of APPPrecursor proteinAmyloid precursor proteinBeta-amyloid peptideSynaptic terminalsHuman neuronsAlzheimer's diseaseNeural cellsApp functionsExpression levelsDiseasePhysiological functionsProtein transport systemWing blister phenotypePhenotypeWing phenotypeImaginal discsCuticle secretionNeuronsWing tissueProteinSecretionPDZ Domain-dependent Suppression of NF-κB/p65-induced Aβ42 Production by a Neuron-specific X11-like Protein*
Tomita S, Fujita T, Kirino Y, Suzuki T. PDZ Domain-dependent Suppression of NF-κB/p65-induced Aβ42 Production by a Neuron-specific X11-like Protein*. Journal Of Biological Chemistry 2000, 275: 13056-13060. PMID: 10777610, DOI: 10.1074/jbc.c000019200.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAlzheimer DiseaseAmyloid beta-PeptidesAnimalsBrainCell LineCOS CellsDNA, ComplementaryGene Expression RegulationGene LibraryHumansLuciferasesNerve Tissue ProteinsNeuronsNF-kappa BNF-kappa B p50 SubunitPeptide FragmentsPrecipitin TestsProtein BindingProtein IsoformsProtein Structure, TertiaryTranscription Factor RelATranscription, GeneticTransfectionTwo-Hybrid System TechniquesConceptsNF-kappaB/p65X11-like proteinsAlzheimer's diseaseNF-kappaB/p50Progression of ADAmyloid precursor proteinSpecific therapyAbeta productionAβ42 productionAbeta42 productionNF-kappaBP65Neuronal cellsAmino acids 161Precursor proteinX11LAbeta42DiseaseRel homology domainSecretionX11L.P50LIN-10Transcription factorsTherapy
1999
Interaction of a Neuron-specific Protein Containing PDZ Domains with Alzheimer's Amyloid Precursor Protein*
Tomita S, Ozaki T, Taru H, Oguchi S, Takeda S, Yagi Y, Sakiyama S, Kirino Y, Suzuki T. Interaction of a Neuron-specific Protein Containing PDZ Domains with Alzheimer's Amyloid Precursor Protein*. Journal Of Biological Chemistry 1999, 274: 2243-2254. PMID: 9890987, DOI: 10.1074/jbc.274.4.2243.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAlzheimer DiseaseAmino Acid SequenceAmyloid beta-Protein PrecursorAnimalsChromosome MappingChromosomes, Human, Pair 9Cloning, MolecularDNA, ComplementaryHumansMolecular Sequence DataNerve Tissue ProteinsNeuronsProtein BindingProtein Processing, Post-TranslationalSequence Homology, Amino Acid
1998
cDNA isolation of Alzheimer's amyloid precursor protein from cholinergic nerve terminals of the electric organ of the electric ray
IIJIMA K, LEE D, OKUTSU J, TOMITA S, HIRASHIMA N, KIRINO Y, SUZUKI T. cDNA isolation of Alzheimer's amyloid precursor protein from cholinergic nerve terminals of the electric organ of the electric ray. Biochemical Journal 1998, 330: 29-33. PMID: 9461486, PMCID: PMC1219103, DOI: 10.1042/bj3300029.Peer-Reviewed Original ResearchConceptsAlzheimer amyloid precursor proteinAmyloid precursor proteinNerve terminalsCholinergic nerve terminalsPrecursor proteinBeta-amyloid domainAPP695 isoformCholinergic neuronsElectric ray electric organCell bodiesElectric organNeuronsRay electric organPresent studyElectric lobePhosphorylation sitesCytoplasmic domainOrgansPhosphorylated formPhosphorylationProtein