2009
Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches
Link K, Breaker R. Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Therapy 2009, 16: 1189-1201. PMID: 19587710, PMCID: PMC5325117, DOI: 10.1038/gt.2009.81.Peer-Reviewed Original Research
2001
Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes.
Soukup G, DeRose E, Koizumi M, Breaker R. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 2001, 7: 524-36. PMID: 11345431, PMCID: PMC1370106, DOI: 10.1017/s1355838201002175.Peer-Reviewed Original ResearchConceptsEffector-binding domainAllosteric ribozymesRandom mutagenesisMolecular switchLigand-binding RNAsRNA molecular switchCyclic nucleotide monophosphatesModular rational designSecondary structure organizationSpecific effector moleculesGenetic switchDirect mutational analysisNucleotide covariationsCatalytic domainPhylogeny dataMutational analysisModular engineeringCatalytic moduleNucleic acid structuresNucleotide monophosphatesEffector moleculesAffinity maturationRibozymeMutagenesisHammerhead ribozyme
2000
Allosteric nucleic acid catalysts
Soukup G, Breaker R. Allosteric nucleic acid catalysts. Current Opinion In Structural Biology 2000, 10: 318-325. PMID: 10851196, DOI: 10.1016/s0959-440x(00)00090-7.Peer-Reviewed Original ResearchMeSH KeywordsAllosteric RegulationAnimalsCatalysisDNADNA-Binding ProteinsDrug DesignHumansNucleic Acid ConformationRNARNA-Binding ProteinsAltering molecular recognition of RNA aptamers by allosteric selection11Edited by D. E. Draper
Soukup G, Emilsson G, Breaker R. Altering molecular recognition of RNA aptamers by allosteric selection11Edited by D. E. Draper. Journal Of Molecular Biology 2000, 298: 623-632. PMID: 10788325, DOI: 10.1006/jmbi.2000.3704.Peer-Reviewed Original Research
1999
Nucleic acid molecular switches
Soukup G, Breaker R. Nucleic acid molecular switches. Trends In Biotechnology 1999, 17: 469-476. PMID: 10557159, DOI: 10.1016/s0167-7799(99)01383-9.Peer-Reviewed Original ResearchAllosteric ribozymes sensitive to the second messengers cAMP and cGMP.
Koizumi M, Kerr J, Soukup G, Breaker R. Allosteric ribozymes sensitive to the second messengers cAMP and cGMP. Nucleic Acids Symposium Series 1999, 42: 275-6. PMID: 10780486, DOI: 10.1093/nass/42.1.275.Peer-Reviewed Original ResearchAllosteric selection of ribozymes that respond to the second messengers cGMP and cAMP
Koizumi M, Soukup G, Kerr J, Breaker R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nature Structural & Molecular Biology 1999, 6: 1062-1071. PMID: 10542100, DOI: 10.1038/14947.Peer-Reviewed Original ResearchConceptsRNA molecular switchGenetic control elementsMolecular recognition characteristicsEmergence of ribozymesSecond messenger cGMPRNAs exhibitAllosteric ribozymesRNA transcriptsCellular RNASelective sensorCAMP additionMolecular switchFold activationCatalytic rateRecognition characteristicsRibozymeControl elementsEffector compoundsHammerhead ribozymeChemical agentsCompoundsStructural characteristicsSpecific nucleosideNew combinatorial strategyCombinatorial strategiesDesign of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization
Soukup G, Breaker R. Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization. Structure 1999, 7: 783-791. PMID: 10425680, DOI: 10.1016/s0969-2126(99)80102-6.Peer-Reviewed Original ResearchEngineering precision RNA molecular switches
Soukup G, Breaker R. Engineering precision RNA molecular switches. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 3584-3589. PMID: 10097080, PMCID: PMC22337, DOI: 10.1073/pnas.96.7.3584.Peer-Reviewed Original ResearchConceptsRNA molecular switchMolecular switchGenetic control elementsEnzyme engineering strategiesRNA switchesReceptor domainConformational changesControl elementsEngineering strategiesStructural bridgeModular natureMolecular sensorsStructural reorganizationCorresponding ligandsRNARibozymeSwitchLigandsCatalyticReceptorsTripartite constructsReorganizationDomain
1998
Mechanism for allosteric inhibition of an ATP-sensitive ribozyme
Tang J, Breaker R. Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Research 1998, 26: 4214-4221. PMID: 9722642, PMCID: PMC147823, DOI: 10.1093/nar/26.18.4214.Peer-Reviewed Original ResearchConceptsAllosteric ribozymesModular rational designFunctional modulationEffector moleculesSelf-cleaving ribozymesFunction of ribozymesSmall effector moleculesPresence of ATPAbsence of ATPAptamer domainStructural basisLigand bindingAllosteric inhibitionRibozyme domainPossible mechanismTertiary structureConformational changesRibozyme
1997
Rational design of allosteric ribozymes
Tang J, Breaker R. Rational design of allosteric ribozymes. Cell Chemical Biology 1997, 4: 453-459. PMID: 9224568, DOI: 10.1016/s1074-5521(97)90197-6.Peer-Reviewed Original ResearchConceptsAllosteric regulationAllosteric ribozymesEffector moleculesProtein enzymesActive siteCatalytic ratePresence of dATPSelf-cleaving ribozymesSmall effector moleculesPresence of ATPSmall molecule receptorRational design strategyCellular processesEnzyme active siteAptamer domainAllosteric controlAllosteric enzymeCatalytic RNARNA aptamersConformational changesLigand moleculesMetabolic pathwaysCatalytic activityAllosteric hammerheadCatalytic features