2024
Parkinsonism Sac domain mutation in Synaptojanin-1 affects ciliary properties in iPSC-derived dopaminergic neurons
Rafiq N, Fujise K, Rosenfeld M, Xu P, De Camilli P. Parkinsonism Sac domain mutation in Synaptojanin-1 affects ciliary properties in iPSC-derived dopaminergic neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2318943121. PMID: 38635628, PMCID: PMC11047088, DOI: 10.1073/pnas.2318943121.Peer-Reviewed Original ResearchConceptsSynaptojanin 1Endocytic factorsDA neuronsCilia-mediated signalingNerve terminalsIPSC-derived dopaminergic neuronsUbiquitin chainsUbiquitinated proteinsCiliary baseCilia lengthNeurological defectsDopaminergic neuronsProtein dynamicsDomain mutationsAssembly stateIsogenic controlsNeuronsAbnormal accumulationMutationsMiceFocal concentrationParkinsonPI(4UbiquitinEndocytosis
2023
Membrane remodeling properties of the Parkinson’s disease protein LRRK2
Wang X, Espadas J, Wu Y, Cai S, Ge J, Shao L, Roux A, De Camilli P. Membrane remodeling properties of the Parkinson’s disease protein LRRK2. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2309698120. PMID: 37844218, PMCID: PMC10614619, DOI: 10.1073/pnas.2309698120.Peer-Reviewed Original Research
2022
ER-lysosome lipid transfer protein VPS13C/PARK23 prevents aberrant mtDNA-dependent STING signaling
Hancock-Cerutti W, Wu Z, Xu P, Yadavalli N, Leonzino M, Tharkeshwar AK, Ferguson SM, Shadel GS, De Camilli P. ER-lysosome lipid transfer protein VPS13C/PARK23 prevents aberrant mtDNA-dependent STING signaling. Journal Of Cell Biology 2022, 221: e202106046. PMID: 35657605, PMCID: PMC9170524, DOI: 10.1083/jcb.202106046.Peer-Reviewed Original ResearchConceptsParkinson's diseasePD pathogenesisLeucine-rich repeat kinase 2 (LRRK2) G2019S mutationCGAS-STING pathwayAccumulation of lysosomesDNA-sensing cGAS-STING pathwayImmune activationLipid profileSTING signalingG2019S mutationAutosomal recessive Parkinson's diseaseRecessive Parkinson's diseaseModel human cell linesHuman cell linesCell linesPathogenesisLate endosomes/lysosomesDiseaseVPS13CEndosomes/lysosomesCurrent studyTransfer proteinActivationCellsPathway
2021
Insights into VPS13 properties and function reveal a new mechanism of eukaryotic lipid transport
Leonzino M, Reinisch KM, De Camilli P. Insights into VPS13 properties and function reveal a new mechanism of eukaryotic lipid transport. Biochimica Et Biophysica Acta (BBA) - Molecular And Cell Biology Of Lipids 2021, 1866: 159003. PMID: 34216812, PMCID: PMC8325632, DOI: 10.1016/j.bbalip.2021.159003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutophagosomesAutophagy-Related ProteinsCryoelectron MicroscopyDisease Models, AnimalEukaryotic CellsHeredodegenerative Disorders, Nervous SystemHumansHydrophobic and Hydrophilic InteractionsLipid BilayersLipid MetabolismMitochondrial MembranesMutationProtein DomainsStructure-Activity RelationshipVesicular Transport ProteinsYeastsConceptsLipid transportMembrane contact sitesDomain protein familyOccurrence of proteinsVPS13 proteinsEukaryotic cellsNumerous proteinsProtein familyIntracellular membranesProtein bridgeHydrophobic grooveContact sitesMembrane growthLipid transferBilayer lipidsNovel mechanismVps13New mechanismProteinLipidsAtg2OrganellesAdjacent bilayersDiscoveryMechanism
2020
Absence of Sac2/INPP5F enhances the phenotype of a Parkinson’s disease mutation of synaptojanin 1
Cao M, Park D, Wu Y, De Camilli P. Absence of Sac2/INPP5F enhances the phenotype of a Parkinson’s disease mutation of synaptojanin 1. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 12428-12434. PMID: 32424101, PMCID: PMC7275725, DOI: 10.1073/pnas.2004335117.Peer-Reviewed Original ResearchConceptsSynaptojanin 1Sac domain-containing proteinsDisease mutationsDomain-containing proteinsGenome-wide association studiesPD risk lociSynaptic vesicle recyclingEndocytic factorsPD risk genesPhosphatase domainPhosphoinositide phosphataseParkinson's diseaseNumerous genesParkinson’s disease mutationsVesicle recyclingRisk lociAssociation studiesRisk genesInactivating mutationStriatal dopaminergic nerve terminalsGenesOccasional survivorsMutationsDopaminergic nerve terminalsSJ1
2017
Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons
Cao M, Wu Y, Ashrafi G, McCartney AJ, Wheeler H, Bushong EA, Boassa D, Ellisman MH, Ryan TA, De Camilli P. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron 2017, 93: 882-896.e5. PMID: 28231468, PMCID: PMC5340420, DOI: 10.1016/j.neuron.2017.01.019.Peer-Reviewed Original ResearchConceptsDopaminergic axonsEarly-onset parkinsonism patientsEndocytic dysfunctionNeurological manifestationsParkinsonism patientsDystrophic changesParkinson's diseaseDorsal striatumHuman patientsClathrin-coated intermediatesParkin levelsHomozygous mutationMutant brainsSynaptojanin 1Domain mutationsTerminal changesPatientsStriking accumulationAxonsDiseaseMiceSynapsesSynaptic vesicle endocytosisMutationsDysfunction
2015
The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane
Baskin JM, Wu X, Christiano R, Oh MS, Schauder CM, Gazzerro E, Messa M, Baldassari S, Assereto S, Biancheri R, Zara F, Minetti C, Raimondi A, Simons M, Walther TC, Reinisch KM, De Camilli P. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane. Nature Cell Biology 2015, 18: 132-138. PMID: 26571211, PMCID: PMC4689616, DOI: 10.1038/ncb3271.Peer-Reviewed Original Research
2001
The Eps15 C. elegans homologue EHS-1 is implicated in synaptic vesicle recycling
Salcini A, Hilliard M, Croce A, Arbucci S, Luzzi P, Tacchetti C, Daniell L, De Camilli P, Pelicci P, Di Fiore P, Bazzicalupo P. The Eps15 C. elegans homologue EHS-1 is implicated in synaptic vesicle recycling. Nature Cell Biology 2001, 3: 755-760. PMID: 11483962, DOI: 10.1038/35087075.Peer-Reviewed Original ResearchMeSH KeywordsAldicarbAnimalsAnimals, Genetically ModifiedCaenorhabditis elegansCalcium-Binding ProteinsDynaminsFluorescent Antibody TechniqueGanglia, InvertebrateGene DeletionGenes, ReporterGTP PhosphohydrolasesInsecticidesMicroscopy, ElectronMolecular Sequence DataMovement DisordersMutationNerve Tissue ProteinsNervous SystemPhenotypePhosphoproteinsProtein TransportSequence Homology, Nucleic AcidSynaptic VesiclesTemperatureConceptsSynaptic vesicle recyclingVesicle recyclingEHS-1Protein-protein interactionsMammalian Eps15Dynamin proteinsEH domainEndocytic machineryEps15Mutant formsPermissive temperatureFunctional studiesSynaptic vesiclesDynaminUncoordinated movementsPresynaptic defectsProteinPhenotypeOrthologuesCaenorhabditisWormsGenesNematodesMachineryVesicles
2000
Dual interaction of synaptotagmin with μ2‐ and α‐adaptin facilitates clathrin‐coated pit nucleation
Haucke V, Wenk M, Chapman E, Farsad K, De Camilli P. Dual interaction of synaptotagmin with μ2‐ and α‐adaptin facilitates clathrin‐coated pit nucleation. The EMBO Journal 2000, 19: 6011-6019. PMID: 11080148, PMCID: PMC305843, DOI: 10.1093/emboj/19.22.6011.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Protein Complex 1Adaptor Protein Complex 2Adaptor Protein Complex 3Adaptor Protein Complex alpha SubunitsAdaptor Protein Complex mu SubunitsAdaptor Proteins, Vesicular TransportAnimalsBinding SitesCalcium-Binding ProteinsCHO CellsClathrinCoated Pits, Cell-MembraneCricetinaeIn Vitro TechniquesLiposomesLysineMembrane GlycoproteinsMembrane ProteinsMutationNerve Tissue ProteinsPhosphoproteinsProtein SubunitsRatsSynaptic VesiclesSynaptotagminsTyrosineConceptsAP-2C2B domainEndocytic adaptor complex AP-2Endocytic clathrin-coated pitsAdaptor complex AP-2Clathrin adaptor AP-2Synaptic vesicle protein synaptotagminTyrosine-based sorting motifAdaptor AP-2Clathrin-coated pitsMajor docking siteKey physiological rolesDual interactionSorting motifClathrin coatTransferrin internalizationProtein synaptotagminDocking siteSubdomain BSynaptotagminPhysiological roleLiving cellsSynaptic vesiclesSubunitsMu2Functional Characterization of a Mammalian Sac1 and Mutants Exhibiting Substrate-specific Defects in Phosphoinositide Phosphatase Activity*
Nemoto Y, Kearns B, Wenk M, Chen H, Mori K, Alb J, De Camilli P, Bankaitis V. Functional Characterization of a Mammalian Sac1 and Mutants Exhibiting Substrate-specific Defects in Phosphoinositide Phosphatase Activity*. Journal Of Biological Chemistry 2000, 275: 34293-34305. PMID: 10887188, DOI: 10.1074/jbc.m003923200.Peer-Reviewed Original ResearchConceptsSubstrate-specific defectsIntegral membrane proteinsPhosphoinositide phosphatase activityPhosphatase activityMembrane proteinsEndoplasmic reticulumGolgi secretory functionIntegral membrane lipidEukaryotic cell physiologyPrimary sequence homologyYeast Sac1pSAC1 geneHeterologous complementationActin functionSac1 domainSac1pBisphosphate substrateMembrane phosphoinositidesPhosphatidylinositol 3Cell physiologyFunctional characterizationGene productsSequence homologyProtein activityGolgi complexA Functional Link between Dynamin and the Actin Cytoskeleton at Podosomes
Ochoa G, Slepnev V, Neff L, Ringstad N, Takei K, Daniell L, Kim W, Cao H, McNiven M, Baron R, De Camilli P. A Functional Link between Dynamin and the Actin Cytoskeleton at Podosomes. Journal Of Cell Biology 2000, 150: 377-390. PMID: 10908579, PMCID: PMC2180219, DOI: 10.1083/jcb.150.2.377.Peer-Reviewed Original ResearchConceptsDynamin 2Rous sarcoma virus resultsFunctional linkAttachment sitesDynamin familyActin cytoskeletonActin turnoverGFP-actinAdhesion structuresPlasma membranePodosomesAdhesion plaquesDynaminCell transformationNontransformed cellsTubular invaginationsFluorescence recoverySimilar turnoverActinSubstratumVirus resultsCellsTurnoverCytoskeletonDramatic changes
1999
Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein
Nemoto Y, De Camilli P. Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. The EMBO Journal 1999, 18: 2991-3006. PMID: 10357812, PMCID: PMC1171381, DOI: 10.1093/emboj/18.11.2991.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAmino Acid SequenceAnimalsBase SequenceBinding SitesCarrier ProteinsCHO CellsCloning, MolecularCricetinaeCytoplasmExonsIntracellular MembranesIsoenzymesMembrane ProteinsMitochondriaMolecular Sequence DataMutationNerve Tissue ProteinsPhosphoric Monoester HydrolasesProtein BindingRatsRecombinant Fusion ProteinsRNA, MessengerYeastsConceptsMitochondrial outer membrane proteinMitochondrial outer membraneOuter membrane proteinsPDZ domainMembrane proteinsSynaptojanin 2Outer membraneNovel mitochondrial outer membrane proteinC-terminal transmembrane regionSingle PDZ domainPerinuclear clusteringTransmembrane regionSynaptojanin 1C-terminusExon sequencesSpliced formsEnforced expressionUnique motifModulation of inositolIntracellular distributionSynaptic vesiclesMitochondriaPutative roleOmp25Protein
1994
The role of Rab3A in neurotransmitter release
Geppert M, Bolshakov V, Siegelbaum S, Takei K, De Camilli P, Hammer R, Südhof T. The role of Rab3A in neurotransmitter release. Nature 1994, 369: 493-497. PMID: 7911226, DOI: 10.1038/369493a0.Peer-Reviewed Original ResearchConceptsRole of Rab3ASynaptic vesicle exocytosisSmall GTPRab3A geneHomologous recombinationVesicle exocytosisSynaptic vesiclesHippocampal CA1 pyramidal cellsSynaptic proteinsProteinCA1 pyramidal cellsNeurotransmitter releaseExocytosisGTPPyramidal cellsRepetitive stimulationSynaptic depressionElectrophysiological recordingsRepetitive stimuliCompensatory changesShort trainsRabphilinRab3Rab3AGenes