2024
Cutting Edge: Phagosome-associated Autophagosomes Containing Antigens and Proteasomes Drive TAP-Independent Cross-Presentation.
Sengupta D, Galicia-Pereyra R, Han P, Graham M, Liu X, Arshad N, Cresswell P. Cutting Edge: Phagosome-associated Autophagosomes Containing Antigens and Proteasomes Drive TAP-Independent Cross-Presentation. The Journal Of Immunology 2024, 212: 1063-1068. PMID: 38353614, PMCID: PMC10948299, DOI: 10.4049/jimmunol.2200446.Peer-Reviewed Original ResearchCross-presentationTransporter associated with Ag processingExogenous AgCD8-positive T lymphocytesAntigenic peptidesMHC-I moleculesDendritic cellsProteasomal deliveryT lymphocytesCytosolic proteasomeActive proteasomesEndocytic compartmentsTAP-independentLumen of phagosomesSubcellular compartmentsEndoplasmic reticulumEndolysosomal vesiclesMHC-IAg processingBind to MHC-IProteasomemosGILT controls innate immunity and germ cell development in Anopheles gambiae
Arora G, Tang X, Cui Y, Yang J, Chuang Y, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. mosGILT controls innate immunity and germ cell development in Anopheles gambiae. BMC Genomics 2024, 25: 42. PMID: 38191283, PMCID: PMC10775533, DOI: 10.1186/s12864-023-09887-0.Peer-Reviewed Original ResearchConceptsGerm cell developmentAnopheles gambiaeCell developmentOvarian developmentReductase-like proteinWild-type mosquitoesPlasmodium life cycleBiological controlGrowth genesEssential regulatorRNA sequencingA. gambiaeGenesGambiaeAltered expressionImpaired ovarian developmentMosquito vectorsLife cycleMosquitoesImmune activationPlasmodium infectionTranscriptomeOogenesisRegulatorProtein
2023
A membrane-associated MHC-I inhibitory axis for cancer immune evasion
Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, Cammer M, Wang K, Al-Santli W, Ciantra Z, Guo Q, You J, Sengupta D, Boukhris A, Zhang H, Liu C, Cresswell P, Dahia P, Pagano M, Aifantis I, Wang J. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell 2023, 186: 3903-3920.e21. PMID: 37557169, PMCID: PMC10961051, DOI: 10.1016/j.cell.2023.07.016.Peer-Reviewed Original ResearchConceptsAcute myeloid leukemiaSolid cancersImmune evasionCancer immune evasionImmune checkpoint blockadeMultiple solid cancersMajor Histocompatibility Complex Class I Antigen PresentationPotential therapeutic targetCell-dependent mannerCell immunityCancer survivalMyeloid leukemiaAntigen presentationTherapeutic targetTransmembrane protein 127Tumor growthGene signatureCancer treatmentCancerPeptide-MHCMHCLeukemiaSushi domainTrimolecular complexE3 ubiquitin ligase WWP2A membrane-associated inhibitory axis of MHC-I presentation for cancer immune evasion
Lu Q, Chen X, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Zhang J, Cammer M, Wang K, Ciantra Z, You J, Guo Q, Zhang H, Sengupta D, Boukhris A, Liu C, Cresswell P, Dahia P, Aifantis I, Wang J. A membrane-associated inhibitory axis of MHC-I presentation for cancer immune evasion. The Journal Of Immunology 2023, 210: 89.12-89.12. DOI: 10.4049/jimmunol.210.supp.89.12.Peer-Reviewed Original ResearchAcute myeloid leukemiaInhibitory axisSolid cancersImmune evasionT cell-dependent mannerCancer immune evasionImmune checkpoint blockadeT cell immunityNumber of tumorsMultiple solid cancersCell-dependent mannerApplicable therapeutic targetMDS FoundationCancer survivalMyeloid leukemiaTherapeutic targetTransmembrane protein 127Tumor growthGene signatureCancer treatmentMHCPeptide-MHCLeukemiaSushi domainCancerCMPK2 restricts Zika virus replication by inhibiting viral translation
Pawlak J, Hsu J, Xia H, Han P, Suh H, Grove T, Morrison J, Shi P, Cresswell P, Laurent-Rolle M. CMPK2 restricts Zika virus replication by inhibiting viral translation. PLOS Pathogens 2023, 19: e1011286. PMID: 37075076, PMCID: PMC10150978, DOI: 10.1371/journal.ppat.1011286.Peer-Reviewed Original ResearchConceptsCytidine/uridine monophosphate kinase 2I interferon-stimulated genesZika virus replicationYellow fever virusAntiviral activityAntiviral effectVirus replicationKunjin virusType I interferon-stimulated genesFirst lineOverall antiviral responseHost's first lineEffective therapeutic interventionsViral translationBroad antiviral activityInterferon-stimulated genesGlobal health threatAntiviral treatmentFlaviviral infectionsPathogenic flavivirusesAntiviral functionDrug AdministrationTherapeutic interventionsAntiviral responseDengue virus
2022
SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression
Arshad N, Laurent-Rolle M, Ahmed W, Hsu J, Mitchell S, Pawlak J, Sengupta D, Biswas K, Cresswell P. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 120: e2208525120. PMID: 36574644, PMCID: PMC9910621, DOI: 10.1073/pnas.2208525120.Peer-Reviewed Original ResearchConceptsMHC-I expressionSARS-CoV-2Major histocompatibility complex (MHC) class I moleculesT cell recognitionVirus-infected cellsClass I moleculesAntigen presentationOngoing COVID-19 pandemicHeavy chainImmune evasionViral peptidesSecretory pathwayDistinct mechanismsMHCI moleculesPeptide-MHCInfected cellsCausative agentCell recognitionCD8COVID-19 pandemicViral proteinsEndoplasmic reticulumHuman MHCORF7aA novel probe to assess cytosolic entry of exogenous proteins
Lu Q, Jiang Y, Grotzke J, Saltzman M, Cresswell P. A novel probe to assess cytosolic entry of exogenous proteins. Molecular Immunology 2022, 150: 28. DOI: 10.1016/j.molimm.2022.05.096.Peer-Reviewed Original ResearchProteasomal degradation within endocytic organelles can mediate antigen cross- presentation
Sengupta D, Graham M, Liu X, Cresswell P. Proteasomal degradation within endocytic organelles can mediate antigen cross- presentation. Molecular Immunology 2022, 150: 23. DOI: 10.1016/j.molimm.2022.05.080.Peer-Reviewed Original ResearchDendritic cellsMHC-I moleculesMouse bone marrow-derived dendritic cellsBone marrow-derived dendritic cellsMarrow-derived dendritic cellsAntigen processingConventional antigen processingMouse dendritic cellsMHC-I-peptide complexesSurface MHCMHCSurface expressionProteasome inhibitionPeptide loadingHuman B2Cell phagosomesCell typesActive proteasomesSpecific peptidesCellsPeptidesEndocytic compartmentsProteasomal degradationEndocytic pathwayStructural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation
Jiang J, Taylor DK, Kim EJ, Boyd LF, Ahmad J, Mage MG, Truong HV, Woodward CH, Sgourakis NG, Cresswell P, Margulies DH, Natarajan K. Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation. Nature Communications 2022, 13: 5470. PMID: 36115831, PMCID: PMC9482634, DOI: 10.1038/s41467-022-33153-8.Peer-Reviewed Original Research
2021
Translational regulation of viral RNA in the type I interferon response
Hsu J, Laurent-Rolle M, Cresswell P. Translational regulation of viral RNA in the type I interferon response. Current Research In Virological Science 2021, 2: 100012. DOI: 10.1016/j.crviro.2021.100012.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsInterferon-stimulated genesViral infectionViral replicationIFN-I responsesType I interferon responseAntigen-independent mannerInnate immune responseVariety of mechanismsI interferon responseImmune responseVirus life cycleInfectious organismsInterferon responseHost factorsInfectionFirst lineViral RNAViral proteinsType IViral translationCommon cellular responseMolecular mechanismsInhibitionCellular responsesTranslation inhibition
2017
The Role of ER‐resident Lectin Chaperone UGT1 in MHC Class I Peptide Loading
Arshad N, Cresswell P. The Role of ER‐resident Lectin Chaperone UGT1 in MHC Class I Peptide Loading. The FASEB Journal 2017, 31 DOI: 10.1096/fasebj.31.1_supplement.604.13.Peer-Reviewed Original ResearchAntigen Processing and Presentation Mechanisms in Myeloid Cells
Roche P, Cresswell P. Antigen Processing and Presentation Mechanisms in Myeloid Cells. 2017, 209-223. DOI: 10.1128/9781555819194.ch11.Peer-Reviewed Original ResearchDendritic cellsAntigen processingMHC-IIMyeloid cellsMHC-II-associated peptidesEffective adaptive immune responseMajor histocompatibility complex class IHistocompatibility complex class IAdaptive immune responsesAntigen-derived peptidesClass II moleculesComplex class IImmune responseMHC moleculesMHC glycoproteinsMHCClass IEndocytosis of antigensMature effectorsEndolysosomal systemPeptide generationTransmembrane glycoproteinEndoplasmic reticulumCellsPresentation
2014
A congenital disorder of deglycosylation: biochemical characterization of N‐glycanase 1 deficiency in patient fibroblasts (607.3)
He P, Ng B, Cresswell P, Grotzke J, Gunel M, Jafar‐Nejad H, Kodali V, Kaufman R, Freeze H. A congenital disorder of deglycosylation: biochemical characterization of N‐glycanase 1 deficiency in patient fibroblasts (607.3). The FASEB Journal 2014, 28 DOI: 10.1096/fasebj.28.1_supplement.607.3.Peer-Reviewed Original ResearchN-glycanase 1 (NGLY1) deficiencyN-glycanase 1Patient fibroblastsMisfolded glycoproteinsER stressPatient-derived fibroblastsFree oligosaccharidesSignal transductionProteasomal degradationBiochemical characterizationNGLY1Enzymatic activitySubstrate accumulationExome sequencingPhysiological conditionsDeglycosylationFibroblastsAbnormal liver functionGlycoproteinMutationsCongenital disorderPeripheral neuropathyLiver functionAltered size distributionTransduction
2013
A novel human CD1d knock-in mouse model demonstrates potent anti-tumor potential of human CD1d-restricted iNKT cells (P5001)
Yuan W, Wen X, Rao P, Cresswell P, Porcelli S, Kim S, Carreño L, Lawrenczyk A. A novel human CD1d knock-in mouse model demonstrates potent anti-tumor potential of human CD1d-restricted iNKT cells (P5001). The Journal Of Immunology 2013, 190: 110.1-110.1. DOI: 10.4049/jimmunol.190.supp.110.1.Peer-Reviewed Original ResearchINKT cellsHuman iNKT cellsAnti-tumor therapyMouse modelHuman iNKT cell responsesPotent anti-tumor functionsHuman CD1dPowerful anti-tumor effectCD1d antigen presentationFunctional iNKT cellsINKT cell responsesInvariant NKT cellsNKT cell developmentExpression of CD4Conventional mouse modelsAntigen presentation pathwayAnti-tumor functionAnti-tumor effectsHuman clinical trialsAnti-tumor potentialNKT cellsClinical trialsAntigen presentationChallenge modelPreclinical assessment
2012
A multi-dimensional RNAi screen reveals pathways controlling MHC Class II antigen presentation
Paul P, van den Hoorn T, Jongsma M, Janssen L, Cresswell P, van Ham M, Brinke A, Kuijl C, Neefjes J. A multi-dimensional RNAi screen reveals pathways controlling MHC Class II antigen presentation. Molecular Immunology 2012, 51: 27. DOI: 10.1016/j.molimm.2012.02.073.Peer-Reviewed Original ResearchCombined functional and kinetic measurements to address the role of saposins in loading CD1d molecules with iNKT cell agonists
Salio M, Ghadbane H, Shepherd D, Cypen J, Aichinger M, Jervis P, Besra G, Cresswell P, Cerundolo V. Combined functional and kinetic measurements to address the role of saposins in loading CD1d molecules with iNKT cell agonists. Molecular Immunology 2012, 51: 38-39. DOI: 10.1016/j.molimm.2012.02.116.Peer-Reviewed Original Research
2011
TAP-independent presentation of the melanoma vaccine candidate epitope gp100209-217 requires no gp100 sequences outside the core peptide and is sensitive to cytosolic TPP2 degradation (100.2)
Leonhardt R, Vigneron N, Van den Eynde B, Cresswell P. TAP-independent presentation of the melanoma vaccine candidate epitope gp100209-217 requires no gp100 sequences outside the core peptide and is sensitive to cytosolic TPP2 degradation (100.2). The Journal Of Immunology 2011, 186: 100.2-100.2. DOI: 10.4049/jimmunol.186.supp.100.2.Peer-Reviewed Original ResearchMHC class ITripeptidyl peptidase 2TAP-independent presentationClass ITumor-specific antigenic peptideImmune evasion strategiesPeptide vaccineAntigen presentationImmune evasionHLAEvasion strategiesAntigenic peptidesPeptidase 2Proteasome activityGp100PresentationTumorsTAP transporterTAP functionTransporter systemCore peptidePeptidesTotal lackVaccine
2010
Mechanism of Disulfide Reduction by the Acidophilic Reductase Enzyme GILT
Kosuri P, Chen B, Lim E, Reinisch K, Cresswell P, Fernandez J. Mechanism of Disulfide Reduction by the Acidophilic Reductase Enzyme GILT. Biophysical Journal 2010, 98: 449a-450a. DOI: 10.1016/j.bpj.2009.12.2444.Peer-Reviewed Original Research
2003
Charles A. Janeway, Jr. (1943-2003)
Bottomly K, Cresswell P, Flavell R, Ghosh S, Pober J, Schatz D. Charles A. Janeway, Jr. (1943-2003). Cell 2003, 113: 433-434. DOI: 10.1016/s0092-8674(03)00361-1.Commentaries, Editorials and LettersCharles A. Janeway, Jr. (1943-2003)
Bottomly K, Cresswell P, Flavell R, Ghosh S, Pober J, Schatz D. Charles A. Janeway, Jr. (1943-2003). Immunity 2003, 18: 591-592. DOI: 10.1016/s1074-7613(03)00123-7.Commentaries, Editorials and Letters