2024
Abnormalities in pharyngeal arch‐derived structures in SATB2‐associated syndrome
Zarate Y, Bosanko K, Derar N, Fish J. Abnormalities in pharyngeal arch‐derived structures in SATB2‐associated syndrome. Clinical Genetics 2024, 106: 209-213. PMID: 38693682, PMCID: PMC11216868, DOI: 10.1111/cge.14540.Peer-Reviewed Original ResearchConceptsSATB2-associated syndromeMutant miceAutosomal dominant disorderAnalyzed mutant miceEmbryonic mouse developmentDental anomaliesCraniofacial abnormalitiesMandibular distractionTrigeminal gangliaCraniofacial phenotypeClinical phenotypeDominant disorderCraniofacial developmentMouse developmentMicePhenotypic aspectsPatient dataThyroidSyndromeAbnormalitiesLower jawPharyngeal arch-derived structuresSATB2Mandibular morphologyPhenotype
2023
Diagnostic implications of pitfalls in causal variant identification based on 4577 molecularly characterized families.
AlAbdi L, Maddirevula S, Shamseldin HE, Khouj E, Helaby R, Hamid H, Almulhim A, Hashem MO, Abdulwahab F, Abouyousef O, Alqahtani M, Altuwaijri N, Jaafar A, Alshidi T, Alzahrani F, Mendeliome Group, Alkuraya FS. Diagnostic implications of pitfalls in causal variant identification based on 4577 molecularly characterized families. Nat Commun 2023, 14: 5269. PMID: 37644014, DOI: 10.1038/s41467-023-40909-3.Commentaries, Editorials and LettersPRSS8, encoding prostasin, is mutated in patients with autosomal recessive ichthyosis
Shamseldin H, Derar N, Alzaidan H, AlHathal N, Alfalah A, Abdulwahab F, Alzaid T, Alkeraye S, Alobaida S, Alkuraya F. PRSS8, encoding prostasin, is mutated in patients with autosomal recessive ichthyosis. Human Genetics 2023, 142: 477-482. PMID: 36715754, DOI: 10.1007/s00439-023-02527-3.Peer-Reviewed Original ResearchConceptsCanonical splice sitesAssociated with reduced abundanceDeleterious variantsLinkage locusSplice siteNormal transcriptionMissense variantsExome sequencingConsanguineous familyAutosomal recessive ichthyosisRecessive ichthyosisPRSS8VariantsKnockout miceCongenital ichthyosisExomeProstasinSkin histopathologyHuman patientsMissenseScaly skinLociIchthyosisTranscriptionFamily
2022
COVID-19 in Unvaccinated patients with inherited metabolic disorders: A single center experience
Altassan R, Sulaiman R, Alfalah A, Alwagiat W, Megdad E, Alqasabi D, Handoom B, Almesned M, Al-Amri H, Alhassnan Z, Alsayed M, Alzaidan H, Rahbeeni Z, Derar N, Al-Owain M, Albanyan E. COVID-19 in Unvaccinated patients with inherited metabolic disorders: A single center experience. European Journal Of Medical Genetics 2022, 65: 104602. PMID: 36049607, PMCID: PMC9424117, DOI: 10.1016/j.ejmg.2022.104602.Peer-Reviewed Original ResearchConceptsInherited metabolic disordersInherited metabolic disorders patientsCOVID-19 infectionMetabolic disordersMetabolic decompensationEnergy metabolism disorderHigh riskOutcomes of COVID-19 infectionCourse of COVID-19 infectionClinical course of COVID-19 infectionAcute metabolic decompensationCross-sectional retrospective studyIntensive care managementIncidence of COVID-19 infectionClinical courseMedian ageSevere complicationsAcute pancreatitisRelated complicationsRetrospective studyIMD patientsMetabolic acidosisUnvaccinated patientsExposure to infectionDisease manifestations
2021
Prenatal exome sequencing and chromosomal microarray analysis in fetal structural anomalies in a highly consanguineous population reveals a propensity of ciliopathy genes causing multisystem phenotypes
Al-Hamed M, Kurdi W, Khan R, Tulbah M, AlNemer M, AlSahan N, AlMugbel M, Rafiullah R, Assoum M, Monies D, Shah Z, Rahbeeni Z, Derar N, Hakami F, Almutairi G, AlOtaibi A, Ali W, AlShammasi A, AlMubarak W, AlDawoud S, AlAmri S, Saeed B, Bukhari H, Ali M, Akili R, Alquayt L, Hagos S, Elbardisy H, Akilan A, Almuhana N, AlKhalifah A, Abouelhoda M, Ramzan K, Sayer J, Imtiaz F. Prenatal exome sequencing and chromosomal microarray analysis in fetal structural anomalies in a highly consanguineous population reveals a propensity of ciliopathy genes causing multisystem phenotypes. Human Genetics 2021, 141: 101-126. PMID: 34853893, DOI: 10.1007/s00439-021-02406-9.Peer-Reviewed Original ResearchConceptsChromosomal microarray analysisExome sequencingConsanguineous populationsFetal anomaliesMicroarray analysisHeterozygous de novo pathogenic variantLoss of function variantsFetal phenotypeParental DNA samplesFetal abnormalitiesDiagnostic yieldMolecular genetic defectMolecular genetic diagnosticsHistory of congenital anomaliesPrenatal exome sequencingVariable diagnostic yieldCiliopathy genesFetal structural anomaliesMolecular genetic abnormalitiesStructural anomaliesCiliopathy disordersCiliopathy syndromesFunctional variantsNovel variantsGenetic diagnosticseP291 Expanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann-Steiner Syndrome
Sheppard S, Campbell I, Harr M, Gold N, Li D, Bjornsson H, Cohen J, Fahrner J, Fatemi A, Harris J, Nowak C, Stevens C, Grand K, Au M, Graham J, Sanchez-Lara P, Del Campo M, Jones M, Abdul-Rahman O, Alkuraya F, Bassetti J, Bergstrom K, Bhoj E, Dugan S, Kaplan J, Derar N, Gripp K, Hauser N, Innes M, Keena B, Kodra N, Miller R, Nelson B, Nowaczyk M, Rahbeeni Z, Ben-Shachar S, Shieh J, Slavotinek A, Sobering A, Abbott M, Allain D, Amlie-Wolf L, Au P, Bedoukian E, Beek G, Barry J, Berg J, Bernstein J, Cytrynbaum C, Chung B, Donoghue S, Dorrani N, Eaton A, Flores-Daboub J, Dubbs H, Felix C, Fong C, Fung J, Gangaram B, Goldstein A, Greenberg R, Ha T, Hersh J, Izumi K, Kallish S, Kravets E, Kwok P, Jobling R, Knight-Johnson A, Kushner J, Lee B, Levin B, Lindstrom K, Manickam K, Mardach R, McCormick E, McLeod D, Mentch F, Minks K, Muraresku C, Nelson S, Porazzi P, Pichurin P, Powell-Hamilton N, Powis Z, Ritter A, Rogers C, Rohena L, Ronspies C, Schroeder A, Stark Z, Starr L, Stoler J, Suwannarat P, Velinov M, Weksberg R, Wilnai Y, Zadeh N, Zand D, Falk M, Hakonarson H, Zackai E, Quintero-Rivera F. eP291 Expanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann-Steiner Syndrome. Molecular Genetics And Metabolism 2021, 132: s183. DOI: 10.1016/s1096-7192(21)00373-5.Peer-Reviewed Original ResearchExpanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann‐Steiner syndrome
Sheppard S, Campbell I, Harr M, Gold N, Li D, Bjornsson H, Cohen J, Fahrner J, Fatemi A, Harris J, Nowak C, Stevens C, Grand K, Au M, Graham J, Sanchez‐Lara P, Del Campo M, Jones M, Abdul‐Rahman O, Alkuraya F, Bassetti J, Bergstrom K, Bhoj E, Dugan S, Kaplan J, Derar N, Gripp K, Hauser N, Innes A, Keena B, Kodra N, Miller R, Nelson B, Nowaczyk M, Rahbeeni Z, Ben‐Shachar S, Shieh J, Slavotinek A, Sobering A, Abbott M, Allain D, Amlie‐Wolf L, Au P, Bedoukian E, Beek G, Barry J, Berg J, Bernstein J, Cytrynbaum C, Chung B, Donoghue S, Dorrani N, Eaton A, Flores‐Daboub J, Dubbs H, Felix C, Fong C, Fung J, Gangaram B, Goldstein A, Greenberg R, Ha T, Hersh J, Izumi K, Kallish S, Kravets E, Kwok P, Jobling R, Johnson A, Kushner J, Lee B, Levin B, Lindstrom K, Manickam K, Mardach R, McCormick E, McLeod D, Mentch F, Minks K, Muraresku C, Nelson S, Porazzi P, Pichurin P, Powell‐Hamilton N, Powis Z, Ritter A, Rogers C, Rohena L, Ronspies C, Schroeder A, Stark Z, Starr L, Stoler J, Suwannarat P, Velinov M, Weksberg R, Wilnai Y, Zadeh N, Zand D, Falk M, Hakonarson H, Zackai E, Quintero‐Rivera F. Expanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann‐Steiner syndrome. American Journal Of Medical Genetics Part A 2021, 185: 1649-1665. PMID: 33783954, PMCID: PMC8631250, DOI: 10.1002/ajmg.a.62124.Peer-Reviewed Original ResearchConceptsIntellectual disabilityWiedemann-Steiner syndromeGenotype-phenotype correlationDevelopmental trajectoriesDevelopmental milestonesClinician's differential diagnosisAssociated with loss of functionLong-term outcomesDiverse cohortAutosomal dominant disorderEthnically diverse cohortAssociated with lossDevelopmental delayDisabilityMedian ageClinical featuresMonoallelic variantsShort statureDifferential diagnosisPhenotypic spectrumHypertrichosis cubitiIndividualsMedical comorbiditiesDominant disorderFeeding difficulties
2020
Analysis of transcript-deleterious variants in Mendelian disorders: implications for RNA-based diagnostics
Maddirevula S, Kuwahara H, Ewida N, Shamseldin H, Patel N, Alzahrani F, AlSheddi T, AlObeid E, Alenazi M, Alsaif H, Alqahtani M, AlAli M, Al Ali H, Helaby R, Ibrahim N, Abdulwahab F, Hashem M, Hanna N, Monies D, Derar N, Alsagheir A, Alhashem A, Alsaleem B, Alhebbi H, Wali S, Umarov R, Gao X, Alkuraya F. Analysis of transcript-deleterious variants in Mendelian disorders: implications for RNA-based diagnostics. Genome Biology 2020, 21: 145. PMID: 32552793, PMCID: PMC7298854, DOI: 10.1186/s13059-020-02053-9.Peer-Reviewed Original ResearchConceptsWhole-exome sequencingMendelian disordersMendelian diseasesRNA-seqDiagnosis of Mendelian diseasesRNA analysisNon-coding variantsSuspected Mendelian diseasesSuspected Mendelian disordersBlood-derived RNARNA-based diagnosticsWhole-transcriptome sequencingIn silico predictionGenome sequenceRT-PCRMendelian phenotypesTranscriptome sequencingRNA sourceResults of RT-PCRModulate penetranceRNASequenceConclusionsOur resultsVariantsGenome
2018
De novo truncating variants in WHSC1 recapitulate the Wolf–Hirschhorn (4p16.3 microdeletion) syndrome phenotype
Derar N, Al-Hassnan Z, Al-Owain M, Monies D, Abouelhoda M, Meyer B, Moghrabi N, Alkuraya F. De novo truncating variants in WHSC1 recapitulate the Wolf–Hirschhorn (4p16.3 microdeletion) syndrome phenotype. Genetics In Medicine 2018, 21: 185-188. PMID: 29892088, DOI: 10.1038/s41436-018-0014-8.Peer-Reviewed Original ResearchConceptsDe novo truncating variantsHaploinsufficiency of multiple genesSingle-gene levelMicrodeletion syndromeDisease genesGenomic disordersExome sequencingMultiple genesSingle-geneWHSC1Syndrome phenotypeCore phenotypePhenotypePhenotypic expressionLociWolf-HirschhornGenesPhenotypic componentsMicrodeletionHaploinsufficiencyVariantsMilder variantsHemizygosityConclusionOur studySequence
2016
Characterizing the morbid genome of ciliopathies
Shaheen R, Szymanska K, Basu B, Patel N, Ewida N, Faqeih E, Al Hashem A, Derar N, Alsharif H, Aldahmesh M, Alazami A, Hashem M, Ibrahim N, Abdulwahab F, Sonbul R, Alkuraya H, Alnemer M, Al Tala S, Al-Husain M, Morsy H, Seidahmed M, Meriki N, Al-Owain M, AlShahwan S, Tabarki B, Salih M, Ciliopathy WorkingGroup, Faquih T, El-Kalioby M, Ueffing M, Boldt K, Logan C, Parry D, Al Tassan N, Monies D, Megarbane A, Abouelhoda M, Halees A, Johnson C, Alkuraya F. Characterizing the morbid genome of ciliopathies. Genome Biology 2016, 17: 242. PMID: 27894351, PMCID: PMC5126998, DOI: 10.1186/s13059-016-1099-5.Peer-Reviewed Original ResearchConceptsCombined carrier frequencyLoss of function mutationsGenetically heterogeneous conditionCiliopathy phenotypesGenomic analysisGenomic approachesCiliary signalingCiliopathy genesNovel allelesFounder mutationMendelian inheritanceCiliopathy spectrumMeckel-Gruber syndromeBardet-Biedl syndromePrimary ciliaThiol isomerasesFunction mutationsMolecular basisCiliopathiesMutation loadMutationsMeckel-GruberAffected individualsGenesVariable expressionAcyclovir-Induced Neurotoxicity
Chowdhury M, Derar N, Hasan S, Hinch B, Ratnam S, Assaly R. Acyclovir-Induced Neurotoxicity. American Journal Of Therapeutics 2016, 23: e941-e943. PMID: 24942005, DOI: 10.1097/mjt.0000000000000093.Peer-Reviewed Original ResearchConceptsHigh index of suspicionAcyclovir-induced neurotoxicityEnd-stage renal diseaseIndex of suspicionAcyclovir neurotoxicityAcyclovir useRenal impairmentHerpes encephalitisRenal diseaseHemodialysis sessionHigh indexSide effectsDaily hemodialysisNormal mentationClinical practiceHemodialysisNeurotoxicity
2013
Ahsg-fetuin blocks the metabolic arm of insulin action through its interaction with the 95-kD β-subunit of the insulin receptor
Goustin A, Derar N, Abou-Samra A. Ahsg-fetuin blocks the metabolic arm of insulin action through its interaction with the 95-kD β-subunit of the insulin receptor. Cellular Signalling 2013, 25: 981-988. PMID: 23314177, DOI: 10.1016/j.cellsig.2012.12.011.Peer-Reviewed Original ResearchConceptsB subunitInsulin-stimulated GLUT4 translocationHigh-affinity binding of insulinLevel of tyrosine phosphorylationA subunitInsulin receptorTyrosine kinaseInhibiting insulin receptorTreatment of myogenic cellsFurin processing siteSignal peptideGLUT4 translocationHigh-affinity bindingTyrosine phosphorylationATP-dependent systemHEK293 transfected cellsBinding of insulinInsulin signalingProcessing siteTransfected cellsIntact cellsAkt activationAkt phosphorylationLiving cellsHEK293 cells