2024
Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model
Sakamoto R, Murrell M. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nature Communications 2024, 15: 9731. PMID: 39523366, PMCID: PMC11551154, DOI: 10.1038/s41467-024-53228-y.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsActomyosinAnimalsBiomechanical PhenomenaBiomimeticsCell DivisionModels, BiologicalMyosinsUnilamellar LiposomesConceptsMyosin-induced stressContractile ring assemblyCell division mechanismActin filamentsActin cortexCleavage furrowDivision planeActomyosin flowsGiant unilamellar vesiclesRing assemblyCell divisionMyosin activityContractile ring-like structureShape changesRing-like structureDivision mechanismEnergetic costSymmetric divisionActinRing-like formationCell modelUnilamellar vesiclesIn vitro modelFurrowCellsComposite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model
Sakamoto R, Murrell M. Composite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model. Communications Biology 2024, 7: 840. PMID: 38987288, PMCID: PMC11236970, DOI: 10.1038/s42003-024-06528-4.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsActomyosinAnimalsBiomimeticsCell MembraneCell ShapeLiposomesModels, BiologicalMyosinsUnilamellar LiposomesConceptsF-actin networkF-actinF-actin architectureMembrane shape changesCell shape changesActivity of myosinInduce membrane deformationActomyosin contractilityShape changesActin cortexActomyosin cortexGiant unilamellar vesiclesActinMembrane deformationUnilamellar vesiclesCell modelNo-slip boundariesForce generationActomyosinMyosinVesiclesForce transmissionF-actin architecture determines the conversion of chemical energy into mechanical work
Sakamoto R, Murrell M. F-actin architecture determines the conversion of chemical energy into mechanical work. Nature Communications 2024, 15: 3444. PMID: 38658549, PMCID: PMC11043346, DOI: 10.1038/s41467-024-47593-x.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAdenosine TriphosphateAnimalsBiomechanical PhenomenaHydrolysisMyosin Type IIMyosinsRabbitsConceptsF-actin architectureF-actinATP consumption rateF-actin bundlesIn vitro reconstitutionDynamic cellular processesHigher ATP consumptionActin cytoskeletonFilamentous actinMyosin motorsCellular processesATP hydrolysisPurified componentsAdenosine triphosphateForce generationConversion of chemical energyATP consumptionConsumption rateActinChemical energyMyosinNetwork contractionCytoskeletonEnergetic principlesHydrolysis
2023
Membrane tension induces F-actin reorganization and flow in a biomimetic model cortex
Sakamoto R, Banerjee D, Yadav V, Chen S, Gardel M, Sykes C, Banerjee S, Murrell M. Membrane tension induces F-actin reorganization and flow in a biomimetic model cortex. Communications Biology 2023, 6: 325. PMID: 36973388, PMCID: PMC10043271, DOI: 10.1038/s42003-023-04684-7.Peer-Reviewed Original ResearchConceptsF-actin reorganizationMechanical stressCell cortexBiochemical regulationCell shapeActomyosin cortexPhysical behaviorCell polarizationMembrane tensionCell migrationEssential physical behaviorPore openingSpatial assemblyDrive changesMembraneRelative rolesStressActinRegulationDiverse behaviorsRoleAssembly
2022
F-actin architecture determines constraints on myosin thick filament motion
Muresan C, Sun Z, Yadav V, Tabatabai A, Lanier L, Kim J, Kim T, Murrell M. F-actin architecture determines constraints on myosin thick filament motion. Nature Communications 2022, 13: 7008. PMID: 36385016, PMCID: PMC9669029, DOI: 10.1038/s41467-022-34715-6.Peer-Reviewed Original ResearchIn Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
Chen S, Sun Z, Murrell M. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles. Journal Of Visualized Experiments 2022 PMID: 36094272, DOI: 10.3791/64026.Peer-Reviewed Original ResearchConceptsGiant unilamellar vesiclesCytoskeleton networkLipid dropletsCell‐mimicking systemUnilamellar vesiclesActin cytoskeletonVitro reconstitutionGenetic regulationActin networkBiochemical regulationSynthetic biologyCellular activitiesLive cellsMixture of proteinsActin polymersLipid componentsVesiclesRegulationReconstitutionCellsCytoskeletonCell deformationMachineryBiologyQuantitative insightsActive Regulation of Pressure and Volume Defines an Energetic Constraint on the Size of Cell Aggregates
Yousafzai M, Yadav V, Amiri S, Errami Y, Amiri S, Murrell M. Active Regulation of Pressure and Volume Defines an Energetic Constraint on the Size of Cell Aggregates. Physical Review Letters 2022, 128: 048103. PMID: 35148133, DOI: 10.1103/physrevlett.128.048103.Peer-Reviewed Original Research
2015
High‐content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics
Harkness T, McNulty J, Prestil R, Seymour S, Klann T, Murrell M, Ashton R, Saha K. High‐content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics. Biotechnology Journal 2015, 10: 1555-1567. PMID: 26097126, PMCID: PMC6948850, DOI: 10.1002/biot.201400756.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonCell CommunicationCellular MicroenvironmentChromatinExtracellular MatrixHigh-Throughput Screening AssaysHumansMicrotubulesConceptsChromatin dynamicsHigh-content imagingMicroenvironmental cuesHuman cellsCellular microenvironment influencesHuman cell biologySingle cell geometryCell-cell contactExtracellular matrix connectionsActin cytoskeletonHuman cell behaviorCytoskeletal organizationHigh-content screening technologyCell biologyBiophysical cuesCellular responsesCellular microenvironmentNuclear elongationCell behaviorCellular biophysicsSubcellular imagingComplex milieuCellular geometryHuman fibroblastsCytoskeleton
2013
Distribution of directional change as a signature of complex dynamics
Burov S, Tabei S, Huynh T, Murrell M, Philipson L, Rice S, Gardel M, Scherer N, Dinner A. Distribution of directional change as a signature of complex dynamics. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 19689-19694. PMID: 24248363, PMCID: PMC3856831, DOI: 10.1073/pnas.1319473110.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonColloidsData Interpretation, StatisticalModels, TheoreticalMotionStochastic ProcessesConceptsMean square displacementRandom walkParticle tracking dataSelf-similar propertiesStochastic processOrder parameterComplex dynamicsStatistical featuresMore dimensionsSquare displacementSuccessive time intervalsWalkRelative angleCommon modelDynamicsColloidal systemsPossible scenariosTracking dataDistributionModelMotionTime intervalParameters
2012
F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex
Murrell M, Gardel M. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 20820-20825. PMID: 23213249, PMCID: PMC3529094, DOI: 10.1073/pnas.1214753109.Peer-Reviewed Original Research