2022
AMPK and Polycystic Kidney Disease Drug Development: An Interesting Off-Target Target
Caplan MJ. AMPK and Polycystic Kidney Disease Drug Development: An Interesting Off-Target Target. Frontiers In Medicine 2022, 9: 753418. PMID: 35174190, PMCID: PMC8841847, DOI: 10.3389/fmed.2022.753418.Peer-Reviewed Original ResearchCellular signaling pathwaysPolycystic kidney diseasePolycystic kidney disease mutationCellular energy useProtein kinaseMaster regulatorCellular metabolismSignaling pathwaysDisease mutationsGenetic diseasesTissue architectureEnzyme activityDramatic perturbationsAutosomal dominant polycystic kidney diseasePathwayDominant polycystic kidney diseaseNew therapeuticsMutationsRenal tissue architectureDrug developmentCellsKinaseAMPKGeneration pathwaysGenes
2018
Implications of AMPK in the Formation of Epithelial Tight Junctions
Rowart P, Wu J, Caplan MJ, Jouret F. Implications of AMPK in the Formation of Epithelial Tight Junctions. International Journal Of Molecular Sciences 2018, 19: 2040. PMID: 30011834, PMCID: PMC6073107, DOI: 10.3390/ijms19072040.Peer-Reviewed Original ResearchConceptsTJ assemblyPlasma membraneAMPK activationUbiquitous serine/threonine kinaseSerine/threonine kinaseBaso-lateral domainTight junctionsImplication of AMPKSelective paracellular permeabilityCell polarityThreonine kinaseDisruption of TJsProtein kinaseEnergy sensorTJ regulationΓ subunitMembrane componentsZO-1 distributionAssembly/AMPKEpithelial tight junctionsEssential roleZonula occludensKinaseEpithelial cells
2013
Activation of the Ca2+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane
Jouret F, Wu J, Hull M, Rajendran V, Mayr B, Schöfl C, Geibel J, Caplan MJ. Activation of the Ca2+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane. Journal Of Cell Science 2013, 126: 5132-5142. PMID: 24013548, PMCID: PMC3828589, DOI: 10.1242/jcs.127555.Peer-Reviewed Original ResearchConceptsTJ assemblyMDCK cellsStable transfectionFunction mutant formZO-1Tight junction components ZO-1G protein-coupled receptorsHuman CaSRCell-cell contactEpithelial cell plasma membranesMadin-Darby canine kidney cellsCell plasma membraneStimulation of CaSRDivalent ion homeostasisCanine kidney cellsTight junctionsJunction-associated proteinsTight junction componentsEndogenous CaSRProtein kinasePlasma membraneIon homeostasisMutant formsChelator BAPTA-AMCell differentiation
2011
Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia
Seo-Mayer PW, Thulin G, Zhang L, Alves DS, Ardito T, Kashgarian M, Caplan MJ. Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia. American Journal Of Physiology. Renal Physiology 2011, 301: f1346-f1357. PMID: 21849490, PMCID: PMC3233870, DOI: 10.1152/ajprenal.00420.2010.Peer-Reviewed Original ResearchConceptsEpithelial cell polarityMDCK cellsPlasma membrane domainsIon transport proteinsEpithelial cell organizationCellular energy sensorAMPK activator metforminMadin-Darby canine kidney cellsBasolateral plasma membraneShort hairpin RNACanine kidney cellsCell polarityImmunofluoresence localizationRenal epithelial cellsMembrane domainsNa-K-ATPaseProtein kinaseAMPK activatorPlasma membraneVesicular compartmentsAMPK activityTransport proteinsEnergy sensorMolecular consequencesBasolateral localizationActivating AMP-activated protein kinase (AMPK) slows renal cystogenesis
Takiar V, Nishio S, Seo-Mayer P, King JD, Li H, Zhang L, Karihaloo A, Hallows KR, Somlo S, Caplan MJ. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 2462-2467. PMID: 21262823, PMCID: PMC3038735, DOI: 10.1073/pnas.1011498108.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulatorRenal cystogenesisProtein kinaseAutosomal dominant polycystic kidney diseaseFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorEpithelial cellsCyst epithelial cellsRenal cyst developmentCyst-lining epithelial cellsAMPK activationConductance regulatorRapamycin (mTOR) pathwayMammalian targetPharmacological activatorsChloride channelsMTOR pathwayCystogenesisCyst developmentKinaseAMPKContext of ADPKDSignificant arrestDominant polycystic kidney diseasePolycystic kidney disease
2010
AS160 Associates with the Na+,K+-ATPase and Mediates the Adenosine Monophosphate-stimulated Protein Kinase-dependent Regulation of Sodium Pump Surface Expression
Alves DS, Farr GA, Seo-Mayer P, Caplan MJ. AS160 Associates with the Na+,K+-ATPase and Mediates the Adenosine Monophosphate-stimulated Protein Kinase-dependent Regulation of Sodium Pump Surface Expression. Molecular Biology Of The Cell 2010, 21: 4400-4408. PMID: 20943949, PMCID: PMC3002392, DOI: 10.1091/mbc.e10-06-0507.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsBiological TransportCell LineChlorocebus aethiopsCOS CellsDogsDose-Response Relationship, DrugEndocytosisEpithelial CellsGene ExpressionGene Knockdown TechniquesGTPase-Activating ProteinsHumansImmunoprecipitationPhosphorylationPyrazolesPyrimidinesSignal TransductionSodium-Potassium-Exchanging ATPaseConceptsRab-GTPase-activating proteinMost epithelial cell typesCompound CProtein kinase‐dependent regulationKinase-dependent regulationActive transport proteinsMadin-Darby canine kidneyEpithelial cell typesRegulated endocytosisShort hairpin RNASurface expressionATPase endocytosisCell surface expressionProtein kinasePlasma membraneCOS cellsTransport proteinsΑ-subunitHairpin RNAAS160Cell typesIntracellular retentionVariety of mechanismsATPaseATPase activityLymphocytes Accelerate Epithelial Tight Junction Assembly: Role of AMP-Activated Protein Kinase (AMPK)
Tang XX, Chen H, Yu S, Zhang L, Caplan MJ, Chan HC. Lymphocytes Accelerate Epithelial Tight Junction Assembly: Role of AMP-Activated Protein Kinase (AMPK). PLOS ONE 2010, 5: e12343. PMID: 20808811, PMCID: PMC2925955, DOI: 10.1371/journal.pone.0012343.Peer-Reviewed Original ResearchConceptsTJ assemblyActivation of AMPKProtein kinaseEpithelial cellsCalcium switch experimentsEpithelial cell polaritySuppression of AMPKTight junction assemblyRole of AMPMadin-Darby canine kidney cellsCellular ATP levelsCanine kidney cellsTight junctionsCell polarityApicolateral borderJunction assemblyModel cell lineAMPK activationProper formationAdjacent epithelial cellsTJ formationChemical inhibitorsCalu-3 human airway epithelial cellsHuman airway epithelial cellsMDCK cells
2009
Dystroglycan and AMP Kinase: Polarity's Protectors when the Power Goes Out
Zhang L, Seo-Mayer P, Caplan MJ. Dystroglycan and AMP Kinase: Polarity's Protectors when the Power Goes Out. Developmental Cell 2009, 16: 1-2. PMID: 19154710, PMCID: PMC2997531, DOI: 10.1016/j.devcel.2008.12.004.Peer-Reviewed Original Research
2006
AMP-activated protein kinase regulates the assembly of epithelial tight junctions
Zhang L, Li J, Young LH, Caplan MJ. AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 17272-17277. PMID: 17088526, PMCID: PMC1859922, DOI: 10.1073/pnas.0608531103.Peer-Reviewed Original ResearchConceptsTight junction assemblyJunction assemblyProtein kinaseLKB1-dependent phosphorylationCell polarization processCellular energy statusActivation of AMPKTight junctionsEukaryotic cellsTight junction structureAMPKMDCK cellsEpithelial tight junctionsEnergy statusKinaseEpithelial cellsAbsence of Ca2AssemblyTransepithelial electrical resistanceParacellular fluxZonula occludens-1CellsRecent studiesOccludens-1LKB1
1999
Regulation of myocardial glucose uptake and transport during ischemia and energetic stress
Young L, Russell R, Yin R, Caplan M, Ren J, Bergeron R, Shulman G, Sinusas A. Regulation of myocardial glucose uptake and transport during ischemia and energetic stress. The American Journal Of Cardiology 1999, 83: 25-30. PMID: 10750583, DOI: 10.1016/s0002-9149(99)00253-2.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsEnergetic stressEnergy-generating metabolic pathwaysMonophosphate-activated protein kinaseGlucose uptakeGlucose transport proteinProtein kinaseTransporter translocationTransport proteinsMolecular mechanismsMetabolic pathwaysCardiac glucose uptakeGlucose transporterCellular mechanismsGlucose transportFuel gaugeKinaseTranslocationGlucose entryModerate regional ischemiaSubsequent metabolismGlucose utilization increasesImportant roleUptakeGLUT4Stress
1998
Effects of okadaic acid, calyculin A, and PDBu on state of phosphorylation of rat renal Na+-K+-ATPase
Li D, Cheng S, Fisone G, Caplan M, Ohtomo Y, Aperia A. Effects of okadaic acid, calyculin A, and PDBu on state of phosphorylation of rat renal Na+-K+-ATPase. American Journal Of Physiology 1998, 275: f863-f869. PMID: 9843902, DOI: 10.1152/ajprenal.1998.275.6.f863.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDopamine and cAMP-Regulated Phosphoprotein 32Dose-Response Relationship, DrugEnzyme ActivationEnzyme InhibitorsIn Vitro TechniquesKidneyMaleMarine ToxinsNerve Tissue ProteinsOkadaic AcidOxazolesPhorbol 12,13-DibutyratePhosphoprotein PhosphatasesPhosphoproteinsPhosphorylationProtein Kinase CRatsRats, Sprague-DawleySodium-Potassium-Exchanging ATPaseConceptsState of phosphorylationOkadaic acidPP-2ACalyculin AProtein kinasePP-1PP-1 activityATPase alpha subunitProtein kinase C activatorProtein phosphatasePresence of PDBuAlpha subunitATPase phosphorylationPhosphorylationC activatorProtein 1Anti-alpha antibodyATPaseATPase activityKinaseSuch regulationPDBu inhibitionPDBuPhosphataseFK-506