2023
FLAN: feature-wise latent additive neural models for biological applications
Nguyen A, Vasilaki S, Martínez M. FLAN: feature-wise latent additive neural models for biological applications. Briefings In Bioinformatics 2023, 24: bbad056. PMID: 37031956, PMCID: PMC10199769, DOI: 10.1093/bib/bbad056.Peer-Reviewed Original ResearchConceptsLearning modelsDeep neural networksDeep learning modelsMachine learning modelsBenchmark datasetsLatent spaceNeural modelNeural networkAlgorithmic decisionsEnd-usersBlack-boxComplex datasetsAggregated representationDecision processCritical scenariosImpressive resultsDatasetIndividual featuresRepresentationBiological domainData availabilityCodeUsersDecisionPerformance
2021
TITAN: T-cell receptor specificity prediction with bimodal attention networks
Weber A, Born J, Martínez M. TITAN: T-cell receptor specificity prediction with bimodal attention networks. Bioinformatics 2021, 37: i237-i244. PMID: 34252922, PMCID: PMC8275323, DOI: 10.1093/bioinformatics/btab294.Peer-Reviewed Original ResearchMeSH KeywordsEpitopesHumansNeural Networks, ComputerReceptors, Antigen, T-CellT-Cell Antigen Receptor SpecificityT-LymphocytesConceptsK-nearest neighborAttention networkLeverage transfer learningState-of-the-artK-nearest-neighbor (KNN) classifierInput data spaceK-NN classifierBimodal neural networkSMILES sequencesTransfer learningData augmentationAttention heatmapsCompetitive performanceNeural networkData spaceT cell receptorBoost performanceT-cell receptor sequencingClassifierNetworkImproved performanceT cellsPrediction of specificityPerformanceSequencing of T-cell receptorOn the feasibility of deep learning applications using raw mass spectrometry data
Cadow J, Manica M, Mathis R, Reddel R, Robinson P, Wild P, Hains P, Lucas N, Zhong Q, Guo T, Aebersold R, Martínez M. On the feasibility of deep learning applications using raw mass spectrometry data. Bioinformatics 2021, 37: i245-i253. PMID: 34252933, PMCID: PMC8275322, DOI: 10.1093/bioinformatics/btab311.Peer-Reviewed Original ResearchMeSH KeywordsDeep LearningFeasibility StudiesHumansMaleMass SpectrometryNeural Networks, ComputerProteomicsReproducibility of ResultsConceptsRaw mass spectrometry dataDeep learning modelsRaw MS dataMass spectrometry dataClassification performanceDeep learningMS dataMass spectrometryLearning modelsSpectrometry dataApplication of deep learningMS imagesNatural image classificationDeep learning applicationsPrivacy of individualsTransfer learning techniqueData-independent-acquisitionMS2 spectraClassification taskData processing pipelinesClassification labelsImage classificationFeature vectorTransfer learningSample sparsity
2020
PaccMann: a web service for interpretable anticancer compound sensitivity prediction
Cadow J, Born J, Manica M, Oskooei A, Martínez M. PaccMann: a web service for interpretable anticancer compound sensitivity prediction. Nucleic Acids Research 2020, 48: w502-w508. PMID: 32402082, PMCID: PMC7319576, DOI: 10.1093/nar/gkaa327.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic AgentsComputer SimulationDrug RepositioningGene Expression ProfilingInternetNeural Networks, ComputerSirolimusSoftwareConceptsWeb servicesAttention-based neural networkState-of-the-art methodsState-of-the-artOutputs confidence scoresCompound structure informationInteractive editorModel decision makingChemical sub-structuresAttention heatmapsNeural networkWeb-based platformModel interpretationEfficient validationConfidence scoresDrug repositioningCompound structureDrug compoundsWebSource of informationStructural informationCompoundsBiomolecular samplesDecision makingPotential compounds
2019
Toward Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-Based Convolutional Encoders
Manica M, Oskooei A, Born J, Subramanian V, Sáez-Rodríguez J, Martínez M. Toward Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-Based Convolutional Encoders. Molecular Pharmaceutics 2019, 16: 4797-4806. PMID: 31618586, DOI: 10.1021/acs.molpharmaceut.9b00520.Peer-Reviewed Original ResearchConceptsConvolutional encoderReceptor tyrosine kinasesProtein-protein interaction networkAttention-based encoderStructural similarity indexSelection of encodingDrug designDrug sensitivity predictionGene expression profilesIn silico predictionSensitivity predictionAttention weightsLeukemia cell linesSMILES sequencesInformative genesGene expression profiles of tumorsApoptotic processInteraction networkExpression profiles of tumorsBaseline modelIntracellular interactionsEncodingTyrosine kinaseDevelopment of personalized therapiesGenes