2024
Loss of function of metabolic traits in typhoidal Salmonella without apparent genome degradation
Machado L, Galán J. Loss of function of metabolic traits in typhoidal Salmonella without apparent genome degradation. MBio 2024, 15: e00607-24. PMID: 38572992, PMCID: PMC11077982, DOI: 10.1128/mbio.00607-24.Peer-Reviewed Original ResearchConceptsSalmonella enterica</i> serovar TyphiAdaptive convergent evolutionFunction of metabolic pathwaysAmino acid substitutionsConvergent evolutionMetabolic pathwaysParatyphi A.Paratyphi AHuman hostTranscriptional regulationAcid substitutionsMetabolic capabilitiesPoint mutationsParatyphoid feverTranscriptional regulatory proteinsMetabolic enzymesAffecting different genesPresence of point mutationsGenome degradationTyphoidal SalmonellaGlucose-6-phosphateCoding sequenceBioinformatics approachTyphiBacterial pathogens
2023
Parkinson’s disease kinase LRRK2 coordinates a cell-intrinsic itaconate-dependent defence pathway against intracellular Salmonella
Lian H, Park D, Chen M, Schueder F, Lara-Tejero M, Liu J, Galán J. Parkinson’s disease kinase LRRK2 coordinates a cell-intrinsic itaconate-dependent defence pathway against intracellular Salmonella. Nature Microbiology 2023, 8: 1880-1895. PMID: 37640963, PMCID: PMC10962312, DOI: 10.1038/s41564-023-01459-y.Peer-Reviewed Original ResearchConceptsLeucine-rich repeat kinase 2Loss of LRRK2Host defense mechanismsKinase leucine-rich repeat kinase 2Parkinson's disease-associated leucine-rich repeat kinase 2Host defense pathwaysBacterial pathogen SalmonellaRepeat kinase 2Salmonella infectionSalmonella-containing vacuolesCell-intrinsic defenseIntracellular pathogensIntracellular SalmonellaFirst lineSalmonella replicationSalmonella mutantsKinase 2Pathogen SalmonellaDefense mechanismsSalmonellaHost mitochondriaDefense pathwaysDeliveryDefense responsesCells
2022
Assembly and architecture of the type III secretion sorting platform
Soto J, Galán J, Lara-Tejero M. Assembly and architecture of the type III secretion sorting platform. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2218010119. PMID: 36512499, PMCID: PMC9907115, DOI: 10.1073/pnas.2218010119.Peer-Reviewed Original ResearchConceptsType III secretion machinesType III secretion systemTarget eukaryotic cellsType III secretionSecretion of proteinsBacterial nanomachinesSecretion machineEukaryotic cellsExport pathwayImportant bacterial pathogensSecretion systemBacterial structureAntivirulence strategiesCoordinated mechanismFunctional complexityBacterial pathogensGenetic deletionStructure modelingProtein deliveryAssemblyRational developmentCross-linking strategyAssembly processProteinDeletionTyphoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells
Chang SJ, Hsu YT, Chen Y, Lin YY, Lara-Tejero M, Galan JE. Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells. ELife 2022, 11: e78561. PMID: 35579416, PMCID: PMC9142146, DOI: 10.7554/elife.78561.Peer-Reviewed Original ResearchConceptsCellular machineryType III protein secretion systemSpecific cellular machineryVesicle carriersProtein secretion systemExtracellular spaceTyphoid toxinEssential virulence factorExocytic transportGTPase Sar1Syntaxin 4Unusual biologySecretion systemPlasma membraneIntracellular transportRemarkable adaptationSpecific effectorsHost cellsIntracellular pathogensVirulence factorsMachineryCooptionVacuolesToxinSpecific environment
2019
The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells
Lara-tejero M, Galán J. The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells. 2019, 245-259. DOI: 10.1128/9781683670285.ch20.Peer-Reviewed Original ResearchSecretion machineType III protein secretion systemType III secretion machinesProtein secretion systemTarget eukaryotic cellsCell biological processesType III systemMultiprotein nanomachineEukaryotic hostsComplex nanomachinesGram-negative bacteriaPlant pathogensSymbiotic interactionsEukaryotic cellsEffector proteinsSecretion systemMammalian cellsImportant humanBiological processesStructural organizationInjectisomeBacteriaCurrent knowledgeCentral rolePrimary function
2016
Antibacterial Flavonoids from Medicinal Plants Covalently Inactivate Type III Protein Secretion Substrates
Tsou LK, Lara-Tejero M, RoseFigura J, Zhang ZJ, Wang YC, Yount JS, Lefebre M, Dossa PD, Kato J, Guan F, Lam W, Cheng YC, Galán J, Hang HC. Antibacterial Flavonoids from Medicinal Plants Covalently Inactivate Type III Protein Secretion Substrates. Journal Of The American Chemical Society 2016, 138: 2209-2218. PMID: 26847396, PMCID: PMC4831573, DOI: 10.1021/jacs.5b11575.Peer-Reviewed Original ResearchConceptsVirulence pathwaysType III protein secretionType III secretion system effectorsSpecific plant metabolitesSPI-1 T3SSSecretion system effectorsS. typhimurium invasionSalmonella enterica serovar TyphimuriumSecretion substratesEnterica serovar TyphimuriumTraditional Chinese medicineUnappreciated mechanismPlant metabolitesTyphimurium invasionProtein secretionSerovar TyphimuriumAntibacterial flavonoidsBacterial invasionEpithelial cellsSpecific flavonoidsBacterial growthMedicinal plantsPathwayPotential mechanismsInvasion
2015
9 Typhoid toxin
Galan J. 9 Typhoid toxin. 2015, 261-266. DOI: 10.1016/b978-0-12-800188-2.00009-4.Peer-Reviewed Original ResearchTyphoid feverTyphoid toxinLife-threatening systemic diseaseUnique virulence factorsSalmonella enterica serovar TyphiPentameric B subunitEnterica serovar TyphiSystemic diseaseExperimental animalsFeverUnique receptorSerovar TyphiVirulence factorsToxinDiseaseB subunitSalmonella entericaPathogenesisSymptomsSpecificityHuman glycansImportant diseaseReceptors
2008
Interaction of Campylobacter jejuni with Host Cells
Watson R, Galán J. Interaction of Campylobacter jejuni with Host Cells. 2008, 287-296. DOI: 10.1128/9781555815554.ch16.Peer-Reviewed Original ResearchHost cellsBacterial internalizationCell biologyHost cell gene expressionVesicular trafficking pathwaysPowerful genetic toolsCell gene expressionEndocytic machineryTrafficking pathwaysStrong phenotypeGenetic toolsCampylobacter jejuniJejuni mutantsGene expressionIntestinal epithelial cellsMicrobial pathogensInnate immune responseNonphagocytic cellsOwn uptakeBacterial determinantsSpecific adaptationsIntracellular pathogensMutantsPathogenic bacteriaCell interactionsModulation of the actin cytoskeleton by Salmonella
Galan J. Modulation of the actin cytoskeleton by Salmonella. The FASEB Journal 2008, 22: 530.1-530.1. DOI: 10.1096/fasebj.22.1_supplement.530.1.Peer-Reviewed Original ResearchEffector proteinsHost cellsActin cytoskeletonBacterial proteinsCellular responsesBacterial effector proteinsProtein secretion systemSpecialized protein secretion systemActin cytoskeletal reorganizationDownstream effector proteinsSignal transduction pathwaysProtein Cdc42Exchange factorMembrane rufflingSmall GTPRho GTPasesSecretion systemCytoskeletal reorganizationTransduction pathwaysCytoskeletal rearrangementsCdc42RhoG.ProteinCytoskeletonRac
2007
Structure, assembly and function of the Salmonella type III protein secretion organelle
Galán J. Structure, assembly and function of the Salmonella type III protein secretion organelle. GBM Fall Meeting Hamburg 2007 2007, 2007 DOI: 10.1240/sav_gbm_2007_h_002101.Peer-Reviewed Original ResearchThe Salmonella thyphimurium type III protein secretion system: An effective antigen delivery platform for cancer therapeutics
Galan, J.E.. The Salmonella thyphimurium type III protein secretion system: An effective antigen delivery platform for cancer therapeutics. Drugs Of The Future 2007, 32: 0985. DOI: 10.1358/dof.2007.032.11.1132406.Peer-Reviewed Original ResearchUnique Features of a Highly Pathogenic Campylobacter jejuni Strain
Hofreuter D, Tsai J, Watson R, Novik V, Altman B, Benitez M, Clark C, Perbost C, Jarvie T, Du L, Galán J. Unique Features of a Highly Pathogenic Campylobacter jejuni Strain. Infection And Immunity 2007, 75: 542-542. PMCID: PMC1828408, DOI: 10.1128/iai.01701-06.Peer-Reviewed Original Research
2006
Differential activation and function of Rho GTPases during Salmonella– host cell interactions
Patel J, Galán J. Differential activation and function of Rho GTPases during Salmonella– host cell interactions. Journal Of Experimental Medicine 2006, 203: i30-i30. DOI: 10.1084/jem20312oia30.Peer-Reviewed Original ResearchDifferential activation and function of Rho GTPases during Salmonella–host cell interactions
Patel JC, Galán J. Differential activation and function of Rho GTPases during Salmonella–host cell interactions. Journal Of Cell Biology 2006, 175: 453-463. PMID: 17074883, PMCID: PMC2064522, DOI: 10.1083/jcb.200605144.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsBacterial ProteinsCdc42 GTP-Binding ProteinCell MembraneChlorocebus aethiopsCOS CellsEnzyme ActivationGuanine Nucleotide Exchange FactorsHumansIntestinal MucosaMutationRac1 GTP-Binding ProteinRho GTP-Binding ProteinsRNA InterferenceSalmonella InfectionsSalmonella typhimuriumTransfectionConceptsRho family GTPasesExchange factorCellular responsesRho family guanosine triphosphatasesSalmonella-host cell interactionsType III secretion systemSpecific Rho family GTPasesActin cytoskeleton remodelingDifferent Rho family GTPasesSpecific cellular responsesActin remodelingGuanosine triphosphatasesRho GTPasesSecretion systemCytoskeleton remodelingBacterial proteinsGTPasesSophisticated mechanismsHost cellsDistinct rolesBacterial pathogensCell interactionsSalmonella entericaDifferential activationCentral roleRole of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis
Lara-Tejero M, Sutterwala FS, Ogura Y, Grant EP, Bertin J, Coyle AJ, Flavell RA, Galán J. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. Journal Of Experimental Medicine 2006, 203: 1407-1412. PMID: 16717117, PMCID: PMC2118315, DOI: 10.1084/jem.20060206.Peer-Reviewed Original Research
2004
Structural Insights into the Assembly of the Type III Secretion Needle Complex
Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galán J, Unger VM. Structural Insights into the Assembly of the Type III Secretion Needle Complex. Science 2004, 306: 1040-1042. PMID: 15528446, PMCID: PMC1459965, DOI: 10.1126/science.1102610.Peer-Reviewed Original ResearchSalmonella Modulates Vesicular Traffic by Altering Phosphoinositide Metabolism
Hernandez LD, Hueffer K, Wenk MR, Galán J. Salmonella Modulates Vesicular Traffic by Altering Phosphoinositide Metabolism. Science 2004, 304: 1805-1807. PMID: 15205533, DOI: 10.1126/science.1098188.Peer-Reviewed Original ResearchConceptsIntracellular replicative nicheType III secretion systemActin cytoskeleton rearrangementBacteria-containing vacuolesBacterial intracellular growthPhosphoinositide phosphataseInnate immune defenseSecretion systemReplicative nicheBacterial entryCytoskeleton rearrangementSpacious phagosomesHost cellsNonphagocytic cellsIntracellular growthImmune defenseSopBPhosphoinositide metabolismSignificant defectsSalmonella entericaVacuolesMembraneCellsNichePhagosomesDisruption of type III secretion in Salmonella enterica serovar Typhimurium by external guide sequences
McKinney JS, Zhang H, Kubori T, Galán J, Altman S. Disruption of type III secretion in Salmonella enterica serovar Typhimurium by external guide sequences. Nucleic Acids Research 2004, 32: 848-854. PMID: 14762212, PMCID: PMC373343, DOI: 10.1093/nar/gkh219.Peer-Reviewed Original Research
2003
A Salmonella protein causes macrophage cell death by inducing autophagy
Hernandez LD, Pypaert M, Flavell RA, Galán J. A Salmonella protein causes macrophage cell death by inducing autophagy. Journal Of Cell Biology 2003, 163: 1123-1131. PMID: 14662750, PMCID: PMC2173598, DOI: 10.1083/jcb.200309161.Peer-Reviewed Original ResearchConceptsMembrane fusion activityCell deathType III protein secretion systemFusion activityProtein secretion systemMacrophage cell deathEndoplasmic reticulum markerSalmonella-infected macrophagesSecretion systemSalmonella proteinsAutophagic vesiclesMutant formsSipBHost cellsCultured cellsMitochondriaMembrane structureSalmonella entericaProteinCausative agentMarked accumulationMacrophagesCellsAutophagosomesAutophagy
2001
Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells
Murli S, Watson R, Galán J. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cellular Microbiology 2001, 3: 795-810. PMID: 11736992, DOI: 10.1046/j.1462-5822.2001.00158.x.Peer-Reviewed Original ResearchMeSH KeywordsActinsBacterial ProteinsCdc42 GTP-Binding ProteinCell NucleusCytoskeletonInterleukin-8Mitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesPhosphorylationPhosphotyrosineProtein Tyrosine PhosphatasesProtein-Tyrosine KinasesSalmonellaSalmonella typhimuriumSignal TransductionSubstrate SpecificityTransfectionTyrosineVimentinConceptsTyrosine phosphatase activityBacterial proteinsCellular responsesPhosphatase activityTyrosine kinaseHost cellsType III secretion systemIntermediate filament protein vimentinCarboxy-terminal domainRho family GTPases Cdc42Actin cytoskeleton reorganizationCellular transcription factorsMAP kinase activationInteraction of SalmonellaMembrane rufflesGAP activitySpecialized organellesGTPases Cdc42Secretion systemTranscription factorsCytoskeleton reorganizationKinase activationProtein vimentinBacterial uptakeProtein