2022
Native human collagen type I provides a viable physiologically relevant alternative to xenogeneic sources for tissue engineering applications: A comparative in vitro and in vivo study
Baltazar T, Kajave NS, Rodriguez M, Chakraborty S, Jiang B, Skardal A, Kishore V, Pober JS, Albanna MZ. Native human collagen type I provides a viable physiologically relevant alternative to xenogeneic sources for tissue engineering applications: A comparative in vitro and in vivo study. Journal Of Biomedical Materials Research Part B Applied Biomaterials 2022, 110: 2323-2337. PMID: 35532208, PMCID: PMC11103545, DOI: 10.1002/jbm.b.35080.Peer-Reviewed Original Research
2019
Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells
Baltazar T, Merola J, Catarino C, Xie C, Kirkiles-Smith N, Lee V, Hotta S, Dai G, Xu X, Ferreira FC, Saltzman WM, Pober JS, Karande P. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Engineering Part A 2019, 26: 227-238. PMID: 31672103, PMCID: PMC7476394, DOI: 10.1089/ten.tea.2019.0201.Peer-Reviewed Original ResearchConceptsSkin graftsHuman endothelial colony-forming cellsEndothelial cellsHuman endothelial cellsHuman skin graftsEndothelial colony-forming cellsPlacental pericytesGraft survivalCutaneous ulcersAllogeneic cellsHuman foreskin keratinocytesMouse microvesselsImmunodeficient miceHuman pericytesGraftColony-forming cellsVascular structuresWound bedForeskin keratinocytesEpidermal maturationPericytesHuman placental pericytesHuman keratinocytesKeratinocytesType I