Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents
Kocsis J, Waxman S. Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents. Nature 1983, 304: 640-642. PMID: 6308475, DOI: 10.1038/304640a0.Peer-Reviewed Original ResearchConceptsNerve fibersPotassium channelsMyelinated peripheral nerve fibresAxon segmentsPeripheral nerve fibersAxon sproutsEndoneurial tubesNerve crushFunctional recoveryFunctional organizationMyelinated fibersAxon cylindersSchwann cellsBurst activityMyelinated axonsMammalian axonsAxonsPeripheral connectionsMembrane depolarizationBasement membraneK channelsRegenerated fibersAxon maturationELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society.
Kocsis J, Waxman S. ELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society. 1983, 89-107. DOI: 10.1016/b978-0-12-635120-0.50010-2.Peer-Reviewed Original ResearchMyelinated axonsAction potentialsNational Multiple Sclerosis SocietyMultiple Sclerosis SocietyIntra-axonal recordingsEarly regenerating fibersNormal myelinated axonsRegenerating fibersPharmacological blockageBurst activityPotassium conductanceAxonsVeterans AdministrationNational InstituteRegenerated fibersRepolarizationFunctional organizationIonic channelsRatsAdministrationMyelin