Featured Publications
Deletion of the transcription factor EBF1 in perivascular stroma disrupts skeletal homeostasis and precipitates premature aging of the marrow microenvironment
Nelson T, Tommasini S, Fretz J. Deletion of the transcription factor EBF1 in perivascular stroma disrupts skeletal homeostasis and precipitates premature aging of the marrow microenvironment. Bone 2024, 187: 117198. PMID: 39002837, PMCID: PMC11410106, DOI: 10.1016/j.bone.2024.117198.Peer-Reviewed Original ResearchEarly B cell factor 1Disrupt cytokine signallingDisrupt BMP signalingTranscription factor early B cell factor 1B cell factor 1Mesenchymal lineagesGlucocorticoid receptor expressionImpaired osteogenic differentiationLineages in vitroTranscription factorsEBF1 deletionsProgenitor mobilizationMyeloid skewingImpaired fracture repairCytokine signalingSmad1 phosphorylationAge-dependent lossBMP signalingReceptor expressionMarrow microenvironmentAdipogenic lineages in vitroHematopoietic nicheMultiple lineagesBone marrowB cellsBone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in a mouse model of iron deficiency anemia
Li X, Lozovatsky L, Tommasini S, Fretz J, Finberg K. Bone marrow sinusoidal endothelial cells are a site of Fgf23 upregulation in a mouse model of iron deficiency anemia. Blood Advances 2023, 7: 5156-5171. PMID: 37417950, PMCID: PMC10480544, DOI: 10.1182/bloodadvances.2022009524.Peer-Reviewed Original ResearchConceptsSinusoidal endothelial cellsEndothelial cellsBone marrowBM sectionsFGF23 upregulationFibroblast growth factor 23Iron deficiencyElevated serum erythropoietinFGF23 promoter activityBM endothelial cellsGrowth factor 23Vitamin D metabolismIron deficiency anemiaSystemic iron deficiencyKnockout mice exhibitBone marrow sinusoidal endothelial cellsNormal iron balanceNonanemic controlsChronic anemiaFactor 23D metabolismEndothelial cell populationErythropoietin treatmentDeficiency anemiaMouse model
2023
Bone Marrow Sinusoidal Endothelial Cells Are a Site of Fgf23 Upregulation in Murine ß-Thalassemia
Fretz J, Chua E, Li X, Finberg K. Bone Marrow Sinusoidal Endothelial Cells Are a Site of Fgf23 Upregulation in Murine ß-Thalassemia. Blood 2023, 142: 3851. DOI: 10.1182/blood-2023-190706.Peer-Reviewed Original ResearchFGF23 levelsBone marrowSinusoidal endothelial cellsWeeks of ageBone marrow sinusoidal endothelial cellsFGF23 upregulationPlasma levelsIntact FGF23Ineffective erythropoiesisChronic iron deficiency anemiaFibroblast growth factor 23Endothelial cellsFGF23 null miceFGF23 promoter activitySystemic iron loadingGrowth factor 23Body weight ratioLeft ventricular hypertrophyElevated FGF23 levelsElevated plasma levelsEffects of FGF23Intact FGF23 levelsIron deficiency anemiaSeverity of anemiaStandard rodent diet
2021
Bone Marrow Sinusoidal Endothelial Cells Are a Site of Fgf23 Upregulation in Iron Deficiency Anemia
Li X, Lozovatsky L, Fretz J, Finberg K. Bone Marrow Sinusoidal Endothelial Cells Are a Site of Fgf23 Upregulation in Iron Deficiency Anemia. Blood 2021, 138: 759. DOI: 10.1182/blood-2021-153329.Peer-Reviewed Original ResearchIron deficiency anemiaSinusoidal endothelial cellsBone marrow sinusoidal endothelial cellsNon-anemic controlsBone marrowFGF23 upregulationEndothelial cellsHepcidin elevationDeficiency anemiaFGF23 productionSerum erythropoietinChronic iron deficiency anemiaIron deficiencyFGF23 promoter activityTissue iron deficiencyIron-restricted anemiaFemurs of miceSystemic iron deficiencyBone marrow sectionsReporter alleleNormal iron balanceEndothelial cell subtypesTotal FGF23Phosphaturic hormoneBlood loss
2017
Bone marrow adipocytes
Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA, Lindskog D, Kaplan JL, Ables G, Rodeheffer MS, Rosen CJ. Bone marrow adipocytes. Adipocyte 2017, 6: 193-204. PMID: 28872979, PMCID: PMC5638373, DOI: 10.1080/21623945.2017.1367881.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsBone marrow adipocytesBone marrowMarrow adipocytesDistinct adipose depotsAdipose tissue increasesWhole-body metabolismHuman bone marrowAdipose depotsAdipose tissueBeige adipocytesBody metabolismMarrowLittle functional significanceFunctional significanceAdipocytesCell populationsTissue increasesInduction signalRecent dataCellsAdipokines
2016
Chapter 20 Marrow Adipose Tissue and its Interactions with the Skeletal, Hematopoietic, and Immune Systems
Berry R, Fretz J, MacDougald O, Klibansky A, Rosen C, Rodeheffer M, Horowitz M. Chapter 20 Marrow Adipose Tissue and its Interactions with the Skeletal, Hematopoietic, and Immune Systems. 2016, 345-352. DOI: 10.1016/b978-0-12-800571-2.00020-7.Chapters
2014
Chapter Seven Use of Osmium Tetroxide Staining with Microcomputerized Tomography to Visualize and Quantify Bone Marrow Adipose Tissue In Vivo
Scheller EL, Troiano N, VanHoutan JN, Bouxsein MA, Fretz JA, Xi Y, Nelson T, Katz G, Berry R, Church CD, Doucette CR, Rodeheffer MS, MacDougald OA, Rosen CJ, Horowitz MC. Chapter Seven Use of Osmium Tetroxide Staining with Microcomputerized Tomography to Visualize and Quantify Bone Marrow Adipose Tissue In Vivo. Methods In Enzymology 2014, 537: 123-139. PMID: 24480344, PMCID: PMC4097010, DOI: 10.1016/b978-0-12-411619-1.00007-0.Peer-Reviewed Original ResearchConceptsStromal vascular fractionBone marrowAdipose tissueBone marrow adipose tissueWhite adipose tissue depotsMicrocomputerized tomographyAdipose tissue depotsMarrow recoveryDrug treatmentMedullary canalTissue depotsMetabolic diseasesVascular fractionStromal cellsMarrow fatEndothelial cellsAdipocyte progenitorsMature adipocytesLong bonesMAT volumeAdipocytesStainingOsmium tetroxide stainingHistochemical stainingConventional quantitation
2010
Altered Metabolism and Lipodystrophy in the Early B-Cell Factor 1-Deficient Mouse
Fretz JA, Nelson T, Xi Y, Adams DJ, Rosen CJ, Horowitz MC. Altered Metabolism and Lipodystrophy in the Early B-Cell Factor 1-Deficient Mouse. Endocrinology 2010, 151: 1611-1621. PMID: 20172967, PMCID: PMC2850234, DOI: 10.1210/en.2009-0987.Peer-Reviewed Original ResearchMeSH KeywordsAdiponectinAdipose TissueAnimalsBlood GlucoseBone MarrowCalorimetryCCAAT-Enhancer-Binding Protein-betaEnergy MetabolismGlucagonInsulinLeptinLipid MetabolismLipodystrophyMiceMice, KnockoutPPAR gammaReverse Transcriptase Polymerase Chain ReactionRNA, MessengerStatistics, NonparametricTrans-ActivatorsConceptsSerum glucose levelsWhite adipose tissueMarrow adiposityGlucose levelsAdipose tissueLevels of leptinBone formation rateAdipose tissue depositionNumber of osteoblastsWk of ageAltered bone morphologySerum osteocalcinInsulin levelsGlucose challengeIP injectionPancreatic hormonesLittermate controlsLipid depositionBone marrowSerum analysisBrown adiposeTissue depositionAltered metabolismMiceAdiposity
2008
Ebf1-dependent control of the osteoblast and adipocyte lineages
Hesslein DG, Fretz JA, Xi Y, Nelson T, Zhou S, Lorenzo JA, Schatz DG, Horowitz MC. Ebf1-dependent control of the osteoblast and adipocyte lineages. Bone 2008, 44: 537-546. PMID: 19130908, PMCID: PMC2657874, DOI: 10.1016/j.bone.2008.11.021.Peer-Reviewed Original ResearchConceptsNumber of osteoclastsBone formation parametersBone formation rateAdipocyte lineageBone marrow cellsOlfactory sensory neuronsSerum osteocalcinOsteoid volumeSensory neuronsAdipocyte numberBone marrowOsteoclast developmentMutant miceMarrow cellsMiceSubcutaneous sitesBone formationAdipocyte developmentStriking increaseDecreased depositionTranscription factorsOsteoblastsB cell fate specificationEBF1Adiposity