2003
The Effects of Compensation for Scatter, Lead X-Rays, and High-Energy Contamination on Tumor Detectability and Activity Estimation in Ga-67 Imaging
Fakhri G, Kijewski M, Maksud P, Moore S. The Effects of Compensation for Scatter, Lead X-Rays, and High-Energy Contamination on Tumor Detectability and Activity Estimation in Ga-67 Imaging. IEEE Transactions On Nuclear Science 2003, 50: 439. DOI: 10.1109/tns.2003.812446.Peer-Reviewed Original ResearchLead X-raysHigh-energy contaminationPresence of scatteringOptimal energy windowSignal-to-noise ratioAnthropomorphic torso phantomHigh-energy photonsMonte Carlo programGa-67 imagingSpherical tumorCompton scatteringPhoton interactionsEnergy windowScattered photonsEnergy photonsPhotopeak windowTorso phantomActivity estimationHigh energyFactors affecting image qualityX-rayScatter correctionPhotopeakGa-67Photons
2001
Comparative Assessment of Energy-Based Methods of Compensating for Scatter and Lead X-Rays in Ga-67 SPECT Imaging
Moore S, Fakhri G, Maksud P. Comparative Assessment of Energy-Based Methods of Compensating for Scatter and Lead X-Rays in Ga-67 SPECT Imaging. 2001, 4: 2197-2198. DOI: 10.1109/nssmic.2001.1009260.Peer-Reviewed Original ResearchLead X-raysGa-67Energy windowArtificial neural networkGa-67 SPECT imagingSPECT imagesHigh-energy contaminationGa-67 SPECTPoisson noise realizationsActivity estimation taskTumor activity concentrationAnthropomorphic phantomEvaluable tumorsGS methodTumorMean square errorData setsOrgan uptakeProjection imagesLymphoma studiesNeural networkPixel valuesX-raySpherical tumorNoise realizations