Quantitative Phenotyping of Xenopus Embryonic Heart Pathophysiology Using Hemoglobin Contrast Subtraction Angiography to Screen Human Cardiomyopathies
Deniz E, Jonas S, Khokha MK, Choma MA. Quantitative Phenotyping of Xenopus Embryonic Heart Pathophysiology Using Hemoglobin Contrast Subtraction Angiography to Screen Human Cardiomyopathies. Frontiers In Physiology 2019, 10: 1197. PMID: 31620018, PMCID: PMC6763566, DOI: 10.3389/fphys.2019.01197.Peer-Reviewed Original ResearchCongenital heart diseaseMyocardial functionSubtraction angiographyHuman cardiomyopathyEfficient animal modelMicroangiography techniqueCardiac dysfunctionCardiac lesionsUnderlying pathophysiologyCardiac functionHeart diseaseAnimal modelsSignificant causeHuman candidate genesHeart pathophysiologyPatientsAngiographyCardiomyopathyPathophysiologyBiomechanical phenotypeDysfunctionCandidate genesDiseaseGene dysfunctionHuman genomic analysisVisualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus
Date P, Ackermann P, Furey C, Fink IB, Jonas S, Khokha MK, Kahle KT, Deniz E. Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus. Scientific Reports 2019, 9: 6196. PMID: 30996265, PMCID: PMC6470164, DOI: 10.1038/s41598-019-42549-4.Peer-Reviewed Original ResearchConceptsCSF flow dynamicsCongenital hydrocephalusOptical coherence tomographyCH pathophysiologyVentricular systemCoherence tomographyBrain developmentCurrent treatment modalitiesHuman congenital hydrocephalusCerebrospinal fluid flowAqueductal stenosisCerebral ventricleNeurosurgical indicationsTreatment modalitiesSurgery techniquesBrain ventriclesEpendymal ciliaCSF flowCiliary dysfunctionHuman L1CAMHydrocephalus pathogenesisVivo investigationsHydrocephalusPathophysiologyVentricle