2024
In vivo neuropil density from anatomical MRI and machine learning
Akif A, Staib L, Herman P, Rothman D, Yu Y, Hyder F. In vivo neuropil density from anatomical MRI and machine learning. Cerebral Cortex 2024, 34: bhae200. PMID: 38771239, PMCID: PMC11107380, DOI: 10.1093/cercor/bhae200.Peer-Reviewed Original ResearchConceptsMagnetic resonance imagingSynaptic densityNeuropil densityCellular densityArtificial neural networkNeural networkPositron emission tomographyAnatomical magnetic resonance imagingHealthy subjectsSynaptic activityMRI scansMachine learning algorithmsBrain's energy budgetEmission tomographyIn vivo MRI scansResonance imagingTissue cellularityLearning algorithmsDiffusion magnetic resonance imagingMachine learningMicroscopic interpretationInterpretation of functional neuroimaging dataIndividual predictionsSubjects
2009
Hypoxic Injury during Neonatal Development in Murine Brain: Correlation between In Vivo DTI Findings and Behavioral Assessment
Chahboune H, Ment LR, Stewart WB, Rothman DL, Vaccarino FM, Hyder F, Schwartz ML. Hypoxic Injury during Neonatal Development in Murine Brain: Correlation between In Vivo DTI Findings and Behavioral Assessment. Cerebral Cortex 2009, 19: 2891-2901. PMID: 19380380, PMCID: PMC2774398, DOI: 10.1093/cercor/bhp068.Peer-Reviewed Original ResearchConceptsChronic sublethal hypoxiaLow birth weight preterm infantsBirth weight preterm infantsHypoxia-induced modificationNeonatal rodent modelPreterm birth resultsWeight preterm infantsSignificant neurodevelopmental disabilitiesOpen field taskGreater locomotor activityPreterm infantsPreterm birthNeurodevelopmental consequencesBirth resultsHypoxic injurySomatosensory cortexCaudate putamenCallosal connectivityCorpus callosumBehavioral deficitsNeurodevelopmental disabilitiesRodent modelsNeonatal developmentDTI findingsSublethal hypoxia
2001
Spectroscopic Assessment of Alterations in Macromolecule and Small-Molecule Metabolites in Human Brain After Stroke
Graham G, Hwang J, Rothman D, Prichard J. Spectroscopic Assessment of Alterations in Macromolecule and Small-Molecule Metabolites in Human Brain After Stroke. Stroke 2001, 32: 2797-2802. PMID: 11739976, DOI: 10.1161/hs1201.099414.Peer-Reviewed Original ResearchGlutamine is the major precursor for GABA synthesis in rat neocortex in vivo following acute GABA-transaminase inhibition
Patel A, Rothman D, Cline G, Behar K. Glutamine is the major precursor for GABA synthesis in rat neocortex in vivo following acute GABA-transaminase inhibition. Brain Research 2001, 919: 207-220. PMID: 11701133, DOI: 10.1016/s0006-8993(01)03015-3.Peer-Reviewed Original ResearchFlux control in the rat gastrocnemius glycogen synthesis pathway by in vivo13C/31P NMR spectroscopy
Chase J, Rothman D, Shulman R. Flux control in the rat gastrocnemius glycogen synthesis pathway by in vivo13C/31P NMR spectroscopy. AJP Endocrinology And Metabolism 2001, 280: e598-e607. PMID: 11254467, DOI: 10.1152/ajpendo.2001.280.4.e598.Peer-Reviewed Original ResearchConceptsGlycogen synthesisGlycogen synthesis pathwayInsulin-stimulated muscle glycogen synthesisMetabolic control analysisMuscle glycogen synthesisGlycogen synthaseSynthesis pathwayGlycogen synthesis rateFlux controlGSaseHyperglycemic glucose concentrationsSynthesis rateControl coefficientsHexokinaseRat gastrocnemius muscleRelative contributionNMR spectroscopyGlycolysisSynthasePathwayIn vivo13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2‐13C]glucose infusion
Sibson N, Mason G, Shen J, Cline G, Herskovits A, Wall J, Behar K, Rothman D, Shulman R. In vivo13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2‐13C]glucose infusion. Journal Of Neurochemistry 2001, 76: 975-989. PMID: 11181817, DOI: 10.1046/j.1471-4159.2001.00074.x.Peer-Reviewed Original ResearchConceptsGlutamate/glutamine cyclingCerebral cortexAstrocytic tricarboxylic acid cycleGlutamine cyclingRat cerebral cortexGlutamine synthesisDe novo glutamine synthesisAnesthetized ratsRat brainNeurotransmitter glutamateHyperammonemic conditionsGlutamate cyclingInfusionGlutamate precursorCortexBrainTCA cycle fluxAnaplerosisMajor metabolic fluxTricarboxylic acid cycleCycle flux
1998
15N-NMR Spectroscopy Studies of Ammonia Transport and Glutamine Synthesis in the Hyperammonemic Rat Brain
Shen J, Sibson N, Cline G, Behar K, Rothman D, Shulman R. 15N-NMR Spectroscopy Studies of Ammonia Transport and Glutamine Synthesis in the Hyperammonemic Rat Brain. Developmental Neuroscience 1998, 20: 434-443. PMID: 9778582, DOI: 10.1159/000017341.Peer-Reviewed Original ResearchStoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity
Sibson N, Dhankhar A, Mason G, Rothman D, Behar K, Shulman R. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 316-321. PMID: 9419373, PMCID: PMC18211, DOI: 10.1073/pnas.95.1.316.Peer-Reviewed Original ResearchConceptsGlutamatergic neuronal activityGlutamate neurotransmitter cyclingNeuronal activityGln synthesisBrain glucose metabolismSynaptic glutamate releaseGlc metabolismGlutamate releaseRat cortexSynaptic activityGlucose metabolismNeuronal functionBrain activation studiesTricarboxylic acid cycleCortexMetabolismAcid cycleActivation studiesAstrocytesNeuronsActivity
1997
Homocarnosine and the measurement of neuronal pH in patients with epilepsy
Rothman D, Behar K, Prichard J, Petroff O. Homocarnosine and the measurement of neuronal pH in patients with epilepsy. Magnetic Resonance In Medicine 1997, 38: 924-929. PMID: 9402193, DOI: 10.1002/mrm.1910380611.Peer-Reviewed Original ResearchIn vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate–glutamine cycling
Sibson N, Dhankhar A, Mason G, Behar K, Rothman D, Shulman R. In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate–glutamine cycling. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 2699-2704. PMID: 9122259, PMCID: PMC20152, DOI: 10.1073/pnas.94.6.2699.Peer-Reviewed Original Research
1996
Human Brain γ‐Aminobutyric Acid Levels and Seizure Control Following Initiation of Vigabatrin Therapy
Petroff O, Behar K, Mattson R, Rothman D. Human Brain γ‐Aminobutyric Acid Levels and Seizure Control Following Initiation of Vigabatrin Therapy. Journal Of Neurochemistry 1996, 67: 2399-2404. PMID: 8931472, DOI: 10.1046/j.1471-4159.1996.67062399.x.Peer-Reviewed Original ResearchConceptsBrain GABA contentImproved seizure controlBrain GABA levelsSeizure controlVigabatrin treatmentGABA levelsDaily doseAntiepileptic drugsOccipital lobeBrain gamma-aminobutyric acid (GABA) concentrationsGABA concentrationHuman brain GABA levelsGABA contentGamma-aminobutyric acid concentrationΓ-aminobutyric acid (GABA) levelsComplex partial seizuresNovel antiepileptic drugBrain GABA concentrationsSeizure frequencyPartial seizuresVigabatrin therapySustained elevationHuman occipital lobeGABA synthesisAcid levelsLow brain GABA level is associated with poor seizure control
Petroff O, Rothman D, Behar K, Mattson R. Low brain GABA level is associated with poor seizure control. Annals Of Neurology 1996, 40: 908-911. PMID: 9007096, DOI: 10.1002/ana.410400613.Peer-Reviewed Original ResearchConceptsLower GABA levelsBrain GABA levelsLower brain GABA levelsPoor seizure controlGABA levelsSeizure controlRecent seizuresGamma-aminobutyric acid concentrationComplex partial seizuresPartial seizuresEpileptic syndromesEpileptic focusOccipital lobeCerebrospinal fluidPatientsSeizuresSignificant associationMagnetic resonanceVivo measurementsSurface coilLevelsEpilepsySyndromeGABAAcid concentrationShort echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain
Hwang J, Graham G, Behar K, Alger J, Prichard J, Rothman D. Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain. Magnetic Resonance In Medicine 1996, 35: 633-639. PMID: 8722812, DOI: 10.1002/mrm.1910350502.Peer-Reviewed Original ResearchConceptsSubacute stroke patientsProton magnetic resonance spectroscopicProton magnetic resonance spectroscopic imagingMagnetic resonance spectroscopic imagingStroke patientsHealthy subjectsMagnetic resonance spectroscopicMetabolite signal intensitiesBrain regionsPathological conditionsMacromolecule resonancesHuman brainBrainSignal intensitySubjectsRecovery timeSpectroscopic imagingPatientsHuman brain GABA levels rise after initiation of vigabatrin therapy but fail to rise further with increasing dose
Petroff O, Rothman D, Behar K, Mattson R. Human brain GABA levels rise after initiation of vigabatrin therapy but fail to rise further with increasing dose. Neurology 1996, 46: 1459-1463. PMID: 8628502, DOI: 10.1212/wnl.46.5.1459.Peer-Reviewed Original ResearchThe effect of gabapentin on brain gamma‐aminobutyric acid in patients with epilepsy
Petroff O, Rothman D, Behar K, Lamoureux D, Mattson R. The effect of gabapentin on brain gamma‐aminobutyric acid in patients with epilepsy. Annals Of Neurology 1996, 39: 95-99. PMID: 8572673, DOI: 10.1002/ana.410390114.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidBrain GABA levelsGABA levelsHuman brain GABA levelsBrain gamma-aminobutyric acidHigh-dose gabapentinAntiepileptic drug treatmentEffect of gabapentinPartial epilepsy patientsTreatment of epilepsyMechanism of actionAdjunctive therapyStandard dosesDrug treatmentEpilepsy patientsOccipital cortexGabapentinPatientsClinical useEpilepsyHuman brainMagnetic resonanceTreatmentMagnetic resonance spectroscopyVivo measurements
1995
Initial Observations on Effect of Vigabatrin on In Vivo 1H Spectroscopic Measurements of γ‐Aminobutyric Acid, Glutamate, and Glutamine in Human Brain
Petroff O, Rothman D, Behar K, Mattson R. Initial Observations on Effect of Vigabatrin on In Vivo 1H Spectroscopic Measurements of γ‐Aminobutyric Acid, Glutamate, and Glutamine in Human Brain. Epilepsia 1995, 36: 457-464. PMID: 7614922, DOI: 10.1111/j.1528-1157.1995.tb00486.x.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidGABA levelsMumol/Antiepileptic drugsOccipital GABA levelsEffective antiepileptic drugEffects of vigabatrinStandard medicationStandard doseΓ-aminobutyric acidHealthy subjectsEpileptic patientsVigabatrinPatientsGABA transaminaseHuman cerebrumNoninvasive measurementHuman brainBrainGlutamateInitial observationsMedicationsCerebrumLevelsDoseIn Vivo Measurement of Phenylalanine in Human Brain by Proton Nuclear Magnetic Resonance Spectroscopy
Novotny E, Avison M, Herschkowitz N, Petroff O, Prichard J, Seashore M, Rothman D. In Vivo Measurement of Phenylalanine in Human Brain by Proton Nuclear Magnetic Resonance Spectroscopy. Pediatric Research 1995, 37: 244-249. PMID: 7731764, DOI: 10.1203/00006450-199502000-00020.Peer-Reviewed Original ResearchConceptsPhe concentrationsPlasma Phe concentrationsEfficacy of therapyCerebral concentrationsUntreated subjectsCerebral metabolitesNeurometabolic disorderControl studyPKU patientsPlasma PheMagnetic resonance spectroscopyMajor causePhenylketonuriaClinical magnetic resonance imaging systemNuclear magnetic resonance spectroscopyMagnetic resonance imaging systemHuman brainResonance imaging systemDisordersSubjectsImaging systemProton nuclear magnetic resonance spectroscopic studiesMagnetic resonance spectroscopic studiesResonance spectroscopyPHE signal
1994
Localized 13C NMR Spectroscopy in the Human Brain of Amino Acid Labeling from d‐[1‐13C]Glucose
Gruetter R, Novotny E, Boulware S, Mason G, Rothman D, Shulman G, Prichard J, Shulman R. Localized 13C NMR Spectroscopy in the Human Brain of Amino Acid Labeling from d‐[1‐13C]Glucose. Journal Of Neurochemistry 1994, 63: 1377-1385. PMID: 7931289, DOI: 10.1046/j.1471-4159.1994.63041377.x.Peer-Reviewed Original ResearchAnalysis of macromolecule resonances in 1H NMR spectra of human brain
Behar K, Rothman D, Spencer D, Petroff O. Analysis of macromolecule resonances in 1H NMR spectra of human brain. Magnetic Resonance In Medicine 1994, 32: 294-302. PMID: 7984061, DOI: 10.1002/mrm.1910320304.Peer-Reviewed Original ResearchProton spectroscopy of human stroke: Assessment of transverse relaxation times and partial volume effects in single volume STEAM MRS
Blamire A, Graham G, Rothman D, Prichard J. Proton spectroscopy of human stroke: Assessment of transverse relaxation times and partial volume effects in single volume STEAM MRS. Magnetic Resonance Imaging 1994, 12: 1227-1235. PMID: 7854028, DOI: 10.1016/0730-725x(94)90087-8.Peer-Reviewed Original ResearchConceptsStroke patientsAge-matched normal subjectsHuman strokeSpin-echo MRINormal subjectsNormal brainPatientsInfarcted tissueProton T2 relaxation timesInverse correlationHigh inverse correlationT2 relaxation timesCholine resonanceSignificant differencesProton spectroscopyPercentage volumeT2 valuesT. SpectraPartial volume effectsPeak amplitudeSTEAM sequence