2022
Olfactory decoding is positively associated with ad libitum food intake in sated humans
Perszyk EE, Davis XS, Small DM. Olfactory decoding is positively associated with ad libitum food intake in sated humans. Appetite 2022, 180: 106351. PMID: 36270421, DOI: 10.1016/j.appet.2022.106351.Peer-Reviewed Original ResearchConceptsAd libitum food intakeBody weight regulationFood intakeWeight regulationLong-term body weight regulationHealthy human adultsFunctional magnetic resonancePiriform cortexSatiety stateUnivariate analysisBody weightMeal consumptionPrevious functional magnetic resonanceNonfood odorsWeight changeBrain activationIntakeHuman adultsMulti-voxel pattern analysisHungry stateRole of olfactionOlfactory codingNeural patternsMagnetic resonanceAmygdala
2020
Development of MacroPics: A novel food picture set to dissociate the effects of carbohydrate and fat on eating behaviors
Fromm S, Perszyk EE, Kanyamibwa A, Wall KM, Hutelin Z, Trinh J, Davis XS, Green BG, Flack KD, DiFeliceantonio A, Small DM. Development of MacroPics: A novel food picture set to dissociate the effects of carbohydrate and fat on eating behaviors. Appetite 2020, 159: 105051. PMID: 33242580, DOI: 10.1016/j.appet.2020.105051.Peer-Reviewed Original ResearchCentral nervous pathways of insulin action in the control of metabolism and food intake
Kullmann S, Kleinridders A, Small DM, Fritsche A, Häring HU, Preissl H, Heni M. Central nervous pathways of insulin action in the control of metabolism and food intake. The Lancet Diabetes & Endocrinology 2020, 8: 524-534. PMID: 32445739, DOI: 10.1016/s2213-8587(20)30113-3.Peer-Reviewed Original ResearchConceptsPalatable food cuesCentral insulin actionCurrent findingsInsulin actionCognitive controlFood cuesCognitive healthPeripheral metabolismFood intakeMesocorticolimbic circuitryBrain insulin actionWhole-body insulin sensitivityCentral nervous pathwaysType 2 diabetesHuman researchCognitive diseasesEndogenous glucose productionDopamine systemNervous pathwaysTherapeutic optionsInsulin sensitivitySystemic metabolismAnimal modelsGlucose productionControl of metabolism
2018
Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans
Thanarajah SE, Backes H, DiFeliceantonio AG, Albus K, Cremer AL, Hanssen R, Lippert RN, Cornely OA, Small DM, Brüning JC, Tittgemeyer M. Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans. Cell Metabolism 2018, 29: 695-706.e4. PMID: 30595479, DOI: 10.1016/j.cmet.2018.12.006.Peer-Reviewed Original ResearchConceptsDopaminergic circuitsHigher cognitive centersSegregated brain regionsPeripheral physiological signalsPalatable food intakeReward valueDopamine releaseCognitive centersSubjective desireBrain regionsBrain areasUnderlying reinforcementFood intakeDorsal striatumRole of brainPhysiological signalsFood selection behaviorIntegrative pathwaysFMRIDesirePET methodBrainHumansIntakeSelection behavior
2016
Reorganization of brain connectivity in obesity
Geha P, Cecchi G, Constable R, Abdallah C, Small DM. Reorganization of brain connectivity in obesity. Human Brain Mapping 2016, 38: 1403-1420. PMID: 27859973, PMCID: PMC6866793, DOI: 10.1002/hbm.23462.Peer-Reviewed Original ResearchConceptsGlobal brain connectivityDorsal attention networkPeripheral metabolic dysfunctionHum Brain MappSuperior parietal lobuleSomatomotor cortexMetabolic dysfunctionVentrolateral prefrontal cortexPremotor areasCaudate nucleusNeurocognitive impairmentObesityAnterior hippocampusVisual cortexBrain regionsParietal lobuleBrain functionPrefrontal cortexBrain connectivityMilkshake consumptionCortexFeeding decisionsBrain organizationInsulaHomeostatic state
2014
The neural signature of satiation is associated with ghrelin response and triglyceride metabolism
Sun X, Veldhuizen MG, Wray AE, de Araujo IE, Sherwin RS, Sinha R, Small DM. The neural signature of satiation is associated with ghrelin response and triglyceride metabolism. Physiology & Behavior 2014, 136: 63-73. PMID: 24732416, PMCID: PMC4195817, DOI: 10.1016/j.physbeh.2014.04.017.Peer-Reviewed Original ResearchConceptsPalatable foodMeal terminationBrain responsesAd libitum mealPost-prandial reductionMedial orbitofrontal cortexDorsolateral prefrontal cortexGhrelin responseAcute changesFree fatty acidsPeripheral signalsTriglyceride metabolismBrain regionsBrain circuitsOrbitofrontal cortexPrefrontal cortexAmount of foodGhrelinMidbrainMilkshakeTriglyceridesCortexFatty acidsEnergy storesGreater attenuation
2013
Ventromedial Prefrontal Cortex Response to Concentrated Sucrose Reflects Liking Rather Than Sweet Quality Coding
Rudenga KJ, Small DM. Ventromedial Prefrontal Cortex Response to Concentrated Sucrose Reflects Liking Rather Than Sweet Quality Coding. Chemical Senses 2013, 38: 585-594. PMID: 23828907, PMCID: PMC3747761, DOI: 10.1093/chemse/bjt029.Peer-Reviewed Original Research
2012
Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger
Nolan-Poupart S, Veldhuizen MG, Geha P, Small DM. Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger. Appetite 2012, 60: 168-174. PMID: 23064394, PMCID: PMC3526000, DOI: 10.1016/j.appet.2012.09.032.Peer-Reviewed Original ResearchConceptsAbsence of hungerFunctional magnetic resonance imagingSubsequent intakeRatings of hungerPeriaqueductal gray regionMidbrain responsesMagnetic resonance imagingKey reward regionsPalatable milkshakeSignificant positive associationPalatable foodResonance imagingInsular responsesOrbitofrontal cortexNeural circuitsGreater intakeMilkshake consumptionIntakeReward regionsBrain responsesEnhanced responseMilkshakePositive associationMidbrainGray region
2010
Genetically Determined Differences in Brain Response to a Primary Food Reward
Felsted JA, Ren X, Chouinard-Decorte F, Small DM. Genetically Determined Differences in Brain Response to a Primary Food Reward. Journal Of Neuroscience 2010, 30: 2428-2432. PMID: 20164326, PMCID: PMC2831082, DOI: 10.1523/jneurosci.5483-09.2010.Peer-Reviewed Original ResearchConceptsBrain responsesPrimary food rewardFunctional magnetic resonanceTaqIA A1 alleleOrbital frontal cortexReward driveIndividual differencesNeural responsesFuture weight gainFood rewardPalatable foodNeuroimaging techniquesPerceptual responsesBiological underpinningsIndividual factorsFrontal cortexImpulsivityDiminished dopamineSimilar ratingsFood reinforcementRewardSpecific associationNeurophysiologyMilkshakeBody mass index
2009
Individual differences in the neurophysiology of reward and the obesity epidemic
Small DM. Individual differences in the neurophysiology of reward and the obesity epidemic. International Journal Of Obesity 2009, 33: s44-s48. PMID: 19528979, PMCID: PMC2788336, DOI: 10.1038/ijo.2009.71.Peer-Reviewed Original Research
2008
Relation of Reward From Food Intake and Anticipated Food Intake to Obesity: A Functional Magnetic Resonance Imaging Study
Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of Reward From Food Intake and Anticipated Food Intake to Obesity: A Functional Magnetic Resonance Imaging Study. Journal Of Psychopathology And Clinical Science 2008, 117: 924-935. PMID: 19025237, PMCID: PMC2681092, DOI: 10.1037/a0013600.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imagingAdolescent girlsGreater activationFunctional magnetic resonance imaging studySomatosensory regionsRelation of rewardGustatory cortexDopamine receptor availabilityMagnetic resonance imaging studyResonance imaging studyChocolate milkshakeTasteless solutionConsequent weight gainFood intakeBrain regionsGreater rewardsHedonic aspectsDecreased activationWeak activationRewardReceptor availabilityMilkshakeGirlsImaging studiesMagnetic resonance imagingRelation Between Obesity and Blunted Striatal Response to Food Is Moderated by TaqIA A1 Allele
Stice E, Spoor S, Bohon C, Small DM. Relation Between Obesity and Blunted Striatal Response to Food Is Moderated by TaqIA A1 Allele. Science 2008, 322: 449-452. PMID: 18927395, PMCID: PMC2681095, DOI: 10.1126/science.1161550.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAllelesBasal GangliaBody Mass IndexCaudate NucleusCorpus StriatumCuesDeoxyribonucleases, Type II Site-SpecificDopamineEatingFemaleFoodHumansHyperphagiaMagnetic Resonance ImagingObesityPolymorphism, Restriction Fragment LengthPutamenReceptors, Dopamine D2Regression AnalysisRewardSignal TransductionWeight GainConceptsDorsal striatumTaqIA restriction fragment length polymorphismConsummatory food rewardMagnetic resonance imaging studyStriatal dopamine receptorsDevelopment of obesityA1 alleleResonance imaging studyFunctional magnetic resonance imaging studyDopamine D2 receptor geneTaqIA A1 alleleObese individualsStriatal dopamineD2 receptor geneProspective dataLean individualsDopamine receptorsFood intakeStriatumImaging studiesStriatal responsesStriatal activationGenetic polymorphismsReceptor geneObesity
2003
Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers
Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. NeuroImage 2003, 19: 1709-1715. PMID: 12948725, DOI: 10.1016/s1053-8119(03)00253-2.Peer-Reviewed Original ResearchConceptsDopamine releasePositron emission tomography scanEmission tomography scanHealthy human volunteersHunger/fullnessFavorite mealAmount of dopamineDorsal putamenStriatum correlatesTomography scanHealthy subjectsCaudate nucleusPleasantness ratingsHuman volunteersVentral striatumScan subjectsStriatumHungry stateSignificant reductionSignificant changesPET dataMealParametric mapsSubjectsCorrelates