2013
Nonlinear Modeling and Processing Using Empirical Intrinsic Geometry with Application to Biomedical Imaging
Talmon R, Shkolnisky Y, Coifman R. Nonlinear Modeling and Processing Using Empirical Intrinsic Geometry with Application to Biomedical Imaging. Lecture Notes In Computer Science 2013, 8085: 441-448. DOI: 10.1007/978-3-642-40020-9_48.Peer-Reviewed Original ResearchNonlinear filtering problemInformation geometryFiltering problemDifferential geometryNonlinear filteringIntrinsic modelingIntrinsic geometryBayesian frameworkStatistical modelRandom observationsNonlinear modelingInstrumental modalitiesInferred modelGeometryNoise resilientReal signalsInvariantsModelingPhoton counterModelBiomedical imagingFilteringApplicationsProblem
2006
Diffusion wavelet packets
Bremer J, Coifman R, Maggioni M, Szlam A. Diffusion wavelet packets. Applied And Computational Harmonic Analysis 2006, 21: 95-112. DOI: 10.1016/j.acha.2006.04.005.Peer-Reviewed Original ResearchDiffusion waveletsWavelet packetEfficient algorithmImage denoisingSame algorithmMultiscale representationPacketsSignal processingWaveletsAlgorithmDenoisingGraphLower dimensionHigher dimensionsApplicationsTime-frequency basisComputationTaskCompressionAnisotropic settingProcessingRepresentationExampleOperatorsTool
1995
Local discriminant bases and their applications
Saito N, Coifman R. Local discriminant bases and their applications. Journal Of Mathematical Imaging And Vision 1995, 5: 337-358. DOI: 10.1007/bf01250288.Peer-Reviewed Original ResearchOrthonormal basisStatistical methodsClassification problemSignificant coordinatesBasis functionsSignal classification problemsTrigonometric basisLocal trigonometric basesLinear discriminant analysisInput signalDirect applicationRegression treesProblemBest basis algorithmAlgorithmTime-frequency planeSignal componentsFurther applicationCoordinatesDimensionalityImage classification problemsApplicationsSmall numberTexture classification problemWavelet packets as a tool for sound processing
Coifman R. Wavelet packets as a tool for sound processing. The Journal Of The Acoustical Society Of America 1995, 97: 3287-3287. DOI: 10.1121/1.411553.Peer-Reviewed Original Research
1985
Some new function spaces and their applications to Harmonic analysis
Coifman R, Meyer Y, Stein E. Some new function spaces and their applications to Harmonic analysis. Journal Of Functional Analysis 1985, 62: 304-335. DOI: 10.1016/0022-1236(85)90007-2.Peer-Reviewed Original ResearchTent spacesHarmonic analysisHardy spacesFamily of spacesNew function spaceLipschitz curvesFunction spacesAtomic decompositionCauchy integralCarleson inequalitySquare functionMaximal functionSpaceTheoryBasic techniquesInequalitySimplificationIntegralsCorollaryMultilinear analysisApplicationsFunctionExtensionUnification