2024
Noise-aware dynamic image denoising and positron range correction for Rubidium-82 cardiac PET imaging via self-supervision
Xie H, Guo L, Velo A, Liu Z, Liu Q, Guo X, Zhou B, Chen X, Tsai Y, Miao T, Xia M, Liu Y, Armstrong I, Wang G, Carson R, Sinusas A, Liu C. Noise-aware dynamic image denoising and positron range correction for Rubidium-82 cardiac PET imaging via self-supervision. Medical Image Analysis 2024, 100: 103391. PMID: 39579623, DOI: 10.1016/j.media.2024.103391.Peer-Reviewed Original ResearchImage denoisingPositron range correctionDynamic framesSelf-supervised methodsSuperior visual qualityLow signal-to-noise ratioCardiac PET imagingDenoising methodSignal-to-noise ratioSelf-supervisionVisual qualityHigh-energy positronsRange correctionsDenoisingNoise levelImage spatial resolutionImage qualityDefect contrastPET imagingImage quantificationRadioactive isotopesPatient scansQuantitative accuracyImagesFrame
2015
Scatter and crosstalk corrections for 99mTc/123I dual‐radionuclide imaging using a CZT SPECT system with pinhole collimators
Fan P, Hutton BF, Holstensson M, Ljungberg M, Pretorius P, Prasad R, Ma T, Liu Y, Wang S, Thorn SL, Stacy MR, Sinusas AJ, Liu C. Scatter and crosstalk corrections for 99mTc/123I dual‐radionuclide imaging using a CZT SPECT system with pinhole collimators. Medical Physics 2015, 42: 6895-6911. PMID: 26632046, DOI: 10.1118/1.4934830.Peer-Reviewed Original ResearchConceptsDual-radionuclide imagingCrosstalk correction methodTEW methodLine source experimentDefect contrastSource experimentsMonte Carlo simulationsIncomplete charge collectionCadmium zinc telluride detectorsLow-energy tailImaging systemCarlo simulationsPinhole collimatorCardiac SPECT systemEnergy tailDetector effectsEnergy spectrumPoint source measurementsSPECT systemCZT detectorsTriple energy window (TEW) methodScatter modelDedicated cardiac SPECT systemsCorrection methodCrosstalk correction