2022
Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy
Riaz M, Park J, Sewanan LR, Ren Y, Schwan J, Das SK, Pomianowski PT, Huang Y, Ellis MW, Luo J, Liu J, Song L, Chen IP, Qiu C, Yazawa M, Tellides G, Hwa J, Young LH, Yang L, Marboe CC, Jacoby DL, Campbell SG, Qyang Y. Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy. Circulation 2022, 145: 1238-1253. PMID: 35384713, PMCID: PMC9109819, DOI: 10.1161/circulationaha.121.056265.Peer-Reviewed Original ResearchConceptsHypertrophic cardiomyopathySarcomeric mutationsFamilial hypertrophic cardiomyopathySudden cardiac deathCardiac myosin heavy chainMechanism-based treatmentsDevelopment of hypertrophyActivated T cellsCalcineurin-nuclear factorForce productionPhenotypic expressionPluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesHeart failureCardiac deathVentricular hypertrophyCell-derived cardiomyocytesCardiac contractilityPharmacological interventionsT cellsCardiac diseaseCardiac hypertrophyPatient-specific induced pluripotent stem cellsPharmacological meansTwitch relaxationThe role of FYCO1-dependent autophagy in lens fiber cell differentiation
Khan SY, Ali M, Kabir F, Na CH, Delannoy M, Ma Y, Qiu C, Costello MJ, Hejtmancik JF, Riazuddin SA. The role of FYCO1-dependent autophagy in lens fiber cell differentiation. Autophagy 2022, 18: 2198-2215. PMID: 35343376, PMCID: PMC9397473, DOI: 10.1080/15548627.2022.2025570.Peer-Reviewed Original ResearchConceptsAutophagic vesiclesLens fiber cell differentiationMouse lensesAutophagic fluxFiber cell differentiationHuman embryonic stem cellsCoiled-coil domainOrganelle-free zoneEmbryonic stem cellsHuman lens epithelial cellsAutophagy-associated genesSingle guide RNAsQuantitative real-time PCRLens epithelial cellsAdaptor proteinRNA-seqGuide RNARNA sequencingCellular organellesLens morphogenesisCataract phenotypeWild typeFYCO1Cell differentiationEndoplasmic reticulum
2019
Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies
Ali M, Kabir F, Thomson JJ, Ma Y, Qiu C, Delannoy M, Khan SY, Riazuddin SA. Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies. Scientific Reports 2019, 9: 18552. PMID: 31811247, PMCID: PMC6898283, DOI: 10.1038/s41598-019-54258-z.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsComparative transcriptome analysisTranscriptome analysisLentoid bodiesPluripotent stem cellsBody transcriptomeRNA sequencingStem cellsNext-generation RNA sequencingEmbryonic stem cellsFiber-like cellsSimilar expression profilesTranscriptome datasetsTranscriptome profilingCell transcriptomeLens morphogenesisExcellent systemMouse lensExpression profilesTranscriptomeMechanism of cataractogenesisLens-like structuresUltrastructure analysisGenesOcular lensCritical role of Lin28‐TNFR2 signalling in cardiac stem cell activation and differentiation
Xiang Q, Yang B, Li L, Qiu B, Qiu C, Gao X, Zhou H, Min W. Critical role of Lin28‐TNFR2 signalling in cardiac stem cell activation and differentiation. Journal Of Cellular And Molecular Medicine 2019, 23: 0-0. PMID: 30734494, PMCID: PMC6433861, DOI: 10.1111/jcmm.14202.Peer-Reviewed Original ResearchConceptsCardiac stem cell activationStem cell activationHuman inducible pluripotent stem cellsCardiac stem cell differentiationCSC activationStem cell differentiationInducible pluripotent stem cellsPluripotent stem cellsCardiac progenitor cellsCritical roleActivation of TNFR2Factor RNACell activationProtein Lin28Cardiomyocyte proteinsCell differentiationStem cellsProgenitor cellsStem cell-based therapiesCSC differentiationProtein expressionDifferentiationCell-based therapiesExpressionActivation
2018
Generation and Proteome Profiling of PBMC-Originated, iPSC-Derived Corneal Endothelial Cells
Ali M, Khan SY, Vasanth S, Ahmed MR, Chen R, Na CH, Thomson JJ, Qiu C, Gottsch JD, Riazuddin SA. Generation and Proteome Profiling of PBMC-Originated, iPSC-Derived Corneal Endothelial Cells. Investigative Ophthalmology & Visual Science 2018, 59: 2437-2444. PMID: 29847650, PMCID: PMC5957521, DOI: 10.1167/iovs.17-22927.Peer-Reviewed Original ResearchMeSH KeywordsAgedCell DifferentiationCells, CulturedCryopreservationEmbryonic Stem CellsEndothelium, CornealFlow CytometryGene Expression ProfilingGenetic MarkersHumansImmunohistochemistryInduced Pluripotent Stem CellsLeukocytes, MononuclearMaleMass SpectrometryMicroscopy, Phase-ContrastMiddle AgedNeural CrestProteomeReal-Time Polymerase Chain ReactionConceptsNeural crest cellsProteome sequencingProteome profilingCorneal endothelial cellsExpression of pluripotentQuantitative real-time PCRPluripotent stem cellsMolecular architectureCrest cellsEndothelial cellsProteomeReal-time PCRPluripotency markersHuman corneal endotheliumStem cellsPhase contrast microscopyExpression levelsProteinIPSCsSequencingCellsProfilingFirst reportContrast microscopyHigh levels
2016
Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells
Dash BC, Levi K, Schwan J, Luo J, Bartulos O, Wu H, Qiu C, Yi T, Ren Y, Campbell S, Rolle MW, Qyang Y. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells. Stem Cell Reports 2016, 7: 19-28. PMID: 27411102, PMCID: PMC4945325, DOI: 10.1016/j.stemcr.2016.05.004.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringFunctional vascular smooth muscle cellsCell-based tissueSelf-assembly approachRenewable sourcesTissue engineeringPluripotent stem cellsPlatform technologyBiomedical applicationsTissue ringsDrug screeningDisease modelingTissue model systemsHuman iPSCStem cellsBroad utilityEfficient approachLarge quantitiesEngineeringMaterialsRegulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family
Hysolli E, Tanaka Y, Su J, Kim KY, Zhong T, Janknecht R, Zhou XL, Geng L, Qiu C, Pan X, Jung YW, Cheng J, Lu J, Zhong M, Weissman SM, Park IH. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family. Stem Cell Reports 2016, 7: 43-54. PMID: 27373925, PMCID: PMC4945581, DOI: 10.1016/j.stemcr.2016.05.014.Peer-Reviewed Original ResearchConceptsDNA methylation stateEmbryonic stem cellsInduced pluripotent stem cellsHuman somatic cell reprogrammingSomatic cell reprogrammingMethylation stateCell reprogrammingMiR-29 familyDNA methylation landscapeImportant epigenetic regulatorsStem cellsOverexpression of Oct4Global DNA methylationMiRNA-based approachesPluripotent stem cellsMethylation landscapeHistone modificationsDNA demethylationEpigenomic changesEarly reprogrammingEpigenetic regulatorsEpigenetic differencesDNA methylationHydroxymethylation analysisReprogramming
2015
Characterization of the mammalian miRNA turnover landscape
Guo Y, Liu J, Elfenbein SJ, Ma Y, Zhong M, Qiu C, Ding Y, Lu J. Characterization of the mammalian miRNA turnover landscape. Nucleic Acids Research 2015, 43: 2326-2341. PMID: 25653157, PMCID: PMC4344502, DOI: 10.1093/nar/gkv057.Peer-Reviewed Original ResearchConceptsMiRNA turnoverStable small RNAsMammalian cell typesCultured mammalian cellsSubset of miRNAsTurnover kineticsMiRNA biogenesisMost miRNAsMiR-222-5pNucleotide biasSmall RNAsMiRNA maturationMammalian cellsSame miRNAMiRNA poolExpression profilingHsp90 associationSequence determinantsDeep sequencingHsp90 inhibitionTurnover rateMiRNA isoformsDifferent turnover ratesSequence featuresCell types
2013
Small-Diameter Vascular Graft Engineered Using Human Embryonic Stem Cell-Derived Mesenchymal Cells
Sundaram S, Echter A, Sivarapatna A, Qiu C, Niklason L. Small-Diameter Vascular Graft Engineered Using Human Embryonic Stem Cell-Derived Mesenchymal Cells. Tissue Engineering Part A 2013, 20: 740-750. PMID: 24125588, PMCID: PMC3926168, DOI: 10.1089/ten.tea.2012.0738.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsHuman embryonic stem cell-derived mesenchymal cellsSmooth muscle cellsSMC marker expressionMesenchymal cellsEmbryonic stem cellsMarkers of cartilageLineage commitmentNew cell sourceGrowth factor betaStem cellsDifferentiation capabilityCell populationsNative counterpartsMuscle cellsHuman vessel wallStringent analysisFactor betaCell sourceCellsMarker expressionSmooth muscle actinMuscle actinVascular constructsCell sourcingEngineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis
Peng S, Gan G, Qiu C, Zhong M, An H, Adelman RA, Rizzolo LJ. Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis. Stem Cells Translational Medicine 2013, 2: 534-544. PMID: 23734062, PMCID: PMC3697821, DOI: 10.5966/sctm.2012-0134.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumBlood-retinal barrierHuman retinal pigment epitheliumPigment epitheliumHuman fetal retinal pigment epitheliumOuter blood-retinal barrierTight junctionsFetal retinal pigment epitheliumEmbryonic stem cell-derived retinal pigment epitheliumAdult retinal pigment epitheliumQuantitative reverse transcription polymerase chain reactionMaturation of hESCReverse transcription-polymerase chain reactionTranscription-polymerase chain reactionHuman embryonic stem cell-derived retinal pigment epitheliumStem cell-derived retinal pigment epitheliumRPE replacement therapyPanel of genesReplacement therapyAnimal modelsHuman embryonic stem cellsRetinal degenerationRPE functionSerum-free mediumHuman retina
2012
Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood.
Olivier E, Qiu C, Bouhassira EE. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood. Stem Cells Translational Medicine 2012, 1: 604-14. PMID: 23197866, PMCID: PMC3659727, DOI: 10.5966/sctm.2012-0059.Peer-Reviewed Original ResearchHigh‐Efficiency Transfection and siRNA‐Mediated Gene Knockdown in Human Pluripotent Stem Cells
Ma Y, Lin H, Qiu C. High‐Efficiency Transfection and siRNA‐Mediated Gene Knockdown in Human Pluripotent Stem Cells. Current Protocols In Stem Cell Biology 2012, 21: 5c.2.1-5c.2.9. PMID: 22605647, DOI: 10.1002/9780470151808.sc05c02s21.Peer-Reviewed Original ResearchConceptsHigh transfection efficiencyPluripotent stem cellsTransfection efficiencyTransfection reagent Lipofectamine 2000Human embryonic stem cellsStem cellsHuman pluripotent stem cellsEmbryonic stem cellsPluripotent cell linesLipofectamine 2000SiRNA-mediated gene knockdownPluripotent cellsExpensive equipmentPluripotent genesGene knockdownProtocolEfficiencyPrimary cellsGenesCell linesCarriersCellsApplicationsTransfection
2010
High-efficiency siRNA-based gene knockdown in human embryonic stem cells
Ma Y, Jin J, Dong C, Cheng EC, Lin H, Huang Y, Qiu C. High-efficiency siRNA-based gene knockdown in human embryonic stem cells. RNA 2010, 16: 2564-2569. PMID: 20978109, PMCID: PMC2995416, DOI: 10.1261/rna.2350710.Peer-Reviewed Original ResearchDynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing
Wu JQ, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M. Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 5254-5259. PMID: 20194744, PMCID: PMC2841935, DOI: 10.1073/pnas.0914114107.Peer-Reviewed Original ResearchConceptsNeural differentiationUndifferentiated hESCsNeural fate specificationCell identity maintenanceStage-specific regulationHuman embryonic stem cellsTypes of genesPaired-end sequencingDifferentiation of hESCsEmbryonic stem cellsPaired-end readsNeural cell differentiationSplicing dynamicsFate specificationDynamic transcriptomeIsoform diversityTranscriptome changesUnannotated transcriptsGene transcriptionRNA sequencingStages of differentiationNeural lineagesCell differentiationDifferential expressionGliogenic potential
2009
Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells
Qiu C, Ma Y, Wang J, Peng S, Huang Y. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Research 2009, 38: 1240-1248. PMID: 19966271, PMCID: PMC2831306, DOI: 10.1093/nar/gkp1071.Peer-Reviewed Original ResearchConceptsRNA helicase APost-transcriptional regulationHuman embryonic stem cellsEmbryonic stem cellsLin28-dependent stimulationOct4 expressionPost-transcriptional regulatory factorsPluripotency factor OCT4Subset of mRNAsPost-transcriptional levelStem cellsTarget mRNA expressionMicroRNA processingFactors OCT4Observed regulationReporter systemRegulatory factorsEfficient translationLin28Novel mechanismMRNARegulationFirst evidenceExpressionMRNA expressionDevelopmentally regulated extended domains of DNA hypomethylation encompass highly transcribed genes of the human β-globin locus
Lathrop MJ, Hsu M, Richardson CA, Olivier EN, Qiu C, Bouhassira EE, Fiering S, Lowrey CH. Developmentally regulated extended domains of DNA hypomethylation encompass highly transcribed genes of the human β-globin locus. Experimental Hematology 2009, 37: 807-813.e2. PMID: 19460471, PMCID: PMC3792488, DOI: 10.1016/j.exphem.2009.04.005.Peer-Reviewed Original ResearchConceptsAdult erythroid cellsCpG island genesHistone modificationsGene expressionDNA hypomethylationErythroid cellsDNA methylationBeta-like globin gene expressionBeta-globin gene regulationIsland genesActive histone marksBeta-globin locusGamma-globin promoterGlobin gene expressionHuman embryonic stem cellsDNA methylation patternsSpecific gene expressionEmbryonic stem cellsPrimary human erythroblastsHuman β-globinHistone marksGene regulationMethylation stateBisulfite sequencingCpG islandsComplex developmental patterns of histone modifications associated with the human β-globin switch in primary cells
Hsu M, Richardson CA, Olivier E, Qiu C, Bouhassira EE, Lowrey CH, Fiering S. Complex developmental patterns of histone modifications associated with the human β-globin switch in primary cells. Experimental Hematology 2009, 37: 799-806.e4. PMID: 19460472, PMCID: PMC2748252, DOI: 10.1016/j.exphem.2009.04.006.Peer-Reviewed Original ResearchConceptsHistone modificationsGene expressionBeta-globin switchDimethyl lysine 9Beta-globin locusΒ-globin switchGamma geneImportant histone modificationsBone marrow cellsGamma gene expressionSuch histonesComplex developmental patternLysine 9Chromatin immunoprecipitationHistone H3Gene suppressionPrimary fetalMarrow cellsUnexpressed genesGamma-globinGenesHistonesDevelopmental stagesBone marrow erythroblastsPrimary cellsRole for MKL1 in megakaryocytic maturation
Cheng EC, Luo Q, Bruscia EM, Renda MJ, Troy JA, Massaro SA, Tuck D, Schulz V, Mane SM, Berliner N, Sun Y, Morris SW, Qiu C, Krause DS. Role for MKL1 in megakaryocytic maturation. Blood 2009, 113: 2826-2834. PMID: 19136660, PMCID: PMC2661865, DOI: 10.1182/blood-2008-09-180596.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood Cell CountBone MarrowCell DifferentiationCell Line, TumorCells, CulturedDNA-Binding ProteinsGene Expression ProfilingGene Expression RegulationHumansLeukemia, Erythroblastic, AcuteMegakaryocytesMiceMice, Inbred C57BLMice, KnockoutOligonucleotide Array Sequence AnalysisOncogene Proteins, FusionPloidiesRecombinant Fusion ProteinsRNA InterferenceRNA, Small InterferingSerum Response FactorThrombocytopeniaThrombopoiesisThrombopoietinTrans-ActivatorsConceptsMegakaryoblastic leukemia 1Reduced platelet countsSerum response factorMegakaryocytic differentiationPeripheral bloodPlatelet countMKL1 expressionMegakaryoblastic leukemiaBone marrow megakaryocytesMuscle cellsPresence of thrombopoietinPhysiologic maturationHuman erythroleukemia cell lineIncreased numberMarrow megakaryocytesCell linesErythroleukemia cell lineMegakaryocytesMegakaryocytic maturationDifferentiated muscle cellsOverexpressionConcurrent increaseMuscle differentiationCellsMaturation
2008
Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells.
Qiu C, Olivier EN, Velho M, Bouhassira EE. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood 2008, 111: 2400-8. PMID: 18024790, PMCID: PMC2234066, DOI: 10.1182/blood-2007-07-102087.Peer-Reviewed Original Research
2006
Large-scale production of embryonic red blood cells from human embryonic stem cells.
Olivier EN, Qiu C, Velho M, Hirsch RE, Bouhassira EE. Large-scale production of embryonic red blood cells from human embryonic stem cells. Experimental Hematology 2006, 34: 1635-42. PMID: 17157159, DOI: 10.1016/j.exphem.2006.07.003.Peer-Reviewed Original Research