1995
Calcium Indirectly Increases the Control Exerted by the Adenine Nucleotide Translocator over 2-Oxoglutarate Oxidation in Rat Heart Mitochondria
Mildaziene V, Baniene R, Nauciene Z, Bakker B, Brown G, Westerhoff H, Kholodenko B. Calcium Indirectly Increases the Control Exerted by the Adenine Nucleotide Translocator over 2-Oxoglutarate Oxidation in Rat Heart Mitochondria. Archives Of Biochemistry And Biophysics 1995, 324: 130-134. PMID: 7503547, DOI: 10.1006/abbi.1995.9918.Peer-Reviewed Original ResearchEnergy, control and DNA structure in the living cell
Wijker J, Jensen P, Snoep J, Gomes A, Guiral M, Jongsma A, de Waal A, Hoving S, van Dooren S, van der Weijden C, van Workum M, van Heeswijk W, Molenaar O, Wielinga P, Richard P, Diderich J, Bakker B, Teusink B, Hemker M, Rohwer J, van der Gugten A, Kholodenko B, Westerhoff H. Energy, control and DNA structure in the living cell. Biophysical Chemistry 1995, 55: 153-165. PMID: 7632875, DOI: 10.1016/0301-4622(94)00148-d.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DiphosphateAdenosine TriphosphateAnimalsCellsDNAEnergy MetabolismHomeostasisHydrogen-Ion ConcentrationMathematicsModels, BiologicalSignal TransductionConceptsHigh ATP/ADP ratiosATP/ADP ratioCell physiologyADP ratioCertain cell typesCellular functionsIntracellular ATP levelsTransduction pathwaysDNA structureLiving cellsCell typesIon gradientsHomeostatic control mechanismsATP levelsCell functionElaborate controlPhysiologyCellsControl mechanismsMaintenance
1993
Kinetic models of coupling between H+ and Na+-translocation and ATP synthesis/hydrolysis by F0F1-ATPases: Can a cell utilize both and for ATP synthesis underin vivo conditions using the same enzyme?
Kholodenko B. Kinetic models of coupling between H+ and Na+-translocation and ATP synthesis/hydrolysis by F0F1-ATPases: Can a cell utilize both and for ATP synthesis underin vivo conditions using the same enzyme? Journal Of Bioenergetics And Biomembranes 1993, 25: 285-295. PMID: 8394322, DOI: 10.1007/bf00762589.Peer-Reviewed Original Research
1988
How do external parameters control fluxes and concentrations of metabolites? An additional relationship in the theory of metabolic control
Kholodenko B. How do external parameters control fluxes and concentrations of metabolites? An additional relationship in the theory of metabolic control. FEBS Letters 1988, 232: 383-386. PMID: 3378629, DOI: 10.1016/0014-5793(88)80775-0.Peer-Reviewed Original Research
1985
Role of the 2,3-diphosphoglycerate shunt in regulating energy metabolism in human erythrocytes.
Kholodenko B, Stepanchikova A, Erlikh L, Ataullakhanov F, Zhabotinskiĭ A. Role of the 2,3-diphosphoglycerate shunt in regulating energy metabolism in human erythrocytes. Bulletin Of The Russian Academy Of Sciences. Biological Series 1985, 196-205. PMID: 3157714.Peer-Reviewed Original Research
1984
Control of mitochondrial oxidative phosphorylation
Kholodenko B. Control of mitochondrial oxidative phosphorylation. Journal Of Theoretical Biology 1984, 107: 179-188. PMID: 6717037, DOI: 10.1016/s0022-5193(84)80020-x.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DiphosphateAdenosine TriphosphateAnimalsKineticsLiverMathematicsMitochondria, LiverMitochondrial ADP, ATP TranslocasesOxidative PhosphorylationRats
1981
The Regulation of Glycolysis in Human Erythrocytes
ATAULLAKHANOV F, VITVITSKY V, ZHABOTINSKY A, PICHUGIN A, PLATONOVA O, KHOLODENKO B, EHRLICH L. The Regulation of Glycolysis in Human Erythrocytes. The FEBS Journal 1981, 115: 359-365. PMID: 7238510, DOI: 10.1111/j.1432-1033.1981.tb05246.x.Peer-Reviewed Original ResearchRegulation of erythrocyte energy metabolism. Dependence of glycolysis characteristics on donor individual parameters.
Kholodenko B, Dibrov B, Zhabotinskiĭ A. Regulation of erythrocyte energy metabolism. Dependence of glycolysis characteristics on donor individual parameters. Биофизика 1981, 26: 501-6. PMID: 6455164.Peer-Reviewed Original ResearchRegulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization.
Ataullakhanov F, Vitvitsky V, Zhabotinsky A, Pichugin A, Kholodenko B, Ehrlich L. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization. Acta Biologica Et Medica Germanica 1981, 40: 991-7. PMID: 7331640.Peer-Reviewed Original Research
1979
Quantitative model of human erythrocyte glycolysis. Region of cell viability determined by ATP concentration.
Ataullakhanov F, Vitvitskiĭ V, Zhabotinskiĭ A, Pichugin A, Kholodenko B. Quantitative model of human erythrocyte glycolysis. Region of cell viability determined by ATP concentration. Биофизика 1979, 24: 1048-53. PMID: 159725.Peer-Reviewed Original Research
1977
Quantitative model of human erythrocyte glycolysis. I. Relationship between the stationary rate of glycolysis and the ATP concentration.
Ataullakhanov F, Vitvitskiĭ V, Zhabotinskiĭ A, Kholodenko B, Erlikh L. Quantitative model of human erythrocyte glycolysis. I. Relationship between the stationary rate of glycolysis and the ATP concentration. Биофизика 1977, 22: 483-8. PMID: 142521.Peer-Reviewed Original ResearchAdenosine TriphosphateErythrocytesGlycolysisHexokinaseHumansMathematicsModels, BiologicalPhosphofructokinase-1