1997
Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL
Goldberg M, Zhang J, Sondek S, Matthews C, Fox R, Horwich A. Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 1080-1085. PMID: 9037009, PMCID: PMC19747, DOI: 10.1073/pnas.94.4.1080.Peer-Reviewed Original ResearchConceptsNative-like structureChaperonin GroELDihydrofolate reductaseProtein-folding intermediatesNative dihydrofolate reductaseStopped-flow fluorescence experimentsNonnative proteinsSubstrate proteinsProductive foldingPresence of ATPHuman dihydrofolate reductaseHydrogen-deuterium exchangeGroELPrimary structureProteinCentral channelHydrophobic interactionsFluorescence experimentsGroESFoldingSpeciesReductaseNMR spectroscopyDistant partsATP
1993
High-resolution gold labeling
Hainfeld J, Furuya F, Carbone K, Simon M, Lin B, Braig K, Horwich A, Safer D, Blechschmidt B, Sprinzl M, Ofengand J, Boublik M. High-resolution gold labeling. Microscopy And Microanalysis 1993, 51: 330-331. DOI: 10.1017/s0424820100147491.Peer-Reviewed Original ResearchGroEL complexDihydrofolate reductaseNascent polypeptide chainsChaperonin GroELMacromolecular complexesOligomeric complexesSmall proteinsActive proteinPolypeptide chainGroELChaperoninGold clustersCentral cavityGold labelingSpecific sitesGold compoundsModel substrateProteinMacromolecular sitesComplexesExternal surfaceRibosomesReductaseSitesChainA polypeptide bound by the chaperonin groEL is localized within a central cavity.
Braig K, Simon M, Furuya F, Hainfeld J, Horwich A. A polypeptide bound by the chaperonin groEL is localized within a central cavity. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 3978-3982. PMID: 8097882, PMCID: PMC46429, DOI: 10.1073/pnas.90.9.3978.Peer-Reviewed Original ResearchConceptsChaperonin GroELGroEL complexEscherichia coli chaperonin GroELOligomeric protein complexesDihydrofolate reductaseMolten globule-like intermediateCentral cavityPolypeptide chain foldingChaperonin ringsChaperonin complexProtein complexesCellular compartmentsDHFR moleculeMonomeric membersPresence of MgATPGroELNative stateEssential roleCompact conformationPolypeptideComplexesCochaperoninChaperoninMultiple sitesIntermediates
1992
Prevention of Protein Denaturation Under Heat Stress by the Chaperonin Hsp60
Martin J, Horwich A, Hartl F. Prevention of Protein Denaturation Under Heat Stress by the Chaperonin Hsp60. Science 1992, 258: 995-998. PMID: 1359644, DOI: 10.1126/science.1359644.Peer-Reviewed Original ResearchConceptsDihydrofolate reductaseShock proteinsMitochondrial heat shock protein 60Native dihydrofolate reductaseHeat shock proteinsVariety of polypeptidesPreexisting proteinsChaperonin Hsp60Hsp60 familyEnvironmental stressHeat shock protein 60Shock protein 60Stress conditionsHeat stressProteinGeneral mechanismPhysiological responsesProtein 60HSP60Cellular structureThermal denaturationProtein denaturationOrganellesDenaturationRefolding
1991
Protein folding causes an arrest of preprotein translocation into mitochondria in vivo.
Wienhues U, Becker K, Schleyer M, Guiard B, Tropschug M, Horwich A, Pfanner N, Neupert W. Protein folding causes an arrest of preprotein translocation into mitochondria in vivo. Journal Of Cell Biology 1991, 115: 1601-1609. PMID: 1757464, PMCID: PMC2289212, DOI: 10.1083/jcb.115.6.1601.Peer-Reviewed Original ResearchMeSH KeywordsAminopterinBiological TransportIntracellular MembranesKineticsL-Lactate DehydrogenaseL-Lactate Dehydrogenase (Cytochrome)Membrane PotentialsMitochondriaProtein ConformationProtein PrecursorsProtein Processing, Post-TranslationalRecombinant Fusion ProteinsSaccharomyces cerevisiaeTetrahydrofolate DehydrogenaseConceptsMitochondrial protein uptakeTranslocation contact sitesAmino-terminal thirdStable tertiary structureDihydrofolate reductase domainImport pathwayPreprotein translocationHybrid proteinProtein foldingMitochondrial membraneTranslocation sitesContact sitesCytochrome b2Fusion proteinPolypeptide segmentsYeast cellsReductase domainTertiary structureProtein uptakeDihydrofolate reductaseProteinMitochondriaMembraneVivoFolding
1985
Expression of amplified DNA sequences for ornithine transcarbamylase in HeLa cells: arginine residues may be required for mitochondrial import of enzyme precursor.
Horwich A, Fenton W, Firgaira F, Fox J, Kolansky D, Mellman I, Rosenberg L. Expression of amplified DNA sequences for ornithine transcarbamylase in HeLa cells: arginine residues may be required for mitochondrial import of enzyme precursor. Journal Of Cell Biology 1985, 100: 1515-1521. PMID: 3988798, PMCID: PMC2113848, DOI: 10.1083/jcb.100.5.1515.Peer-Reviewed Original ResearchConceptsMitochondrial importOTC precursorsHeLa cellsOrnithine transcarbamylaseArginine residuesMouse dihydrofolate reductaseNH2-terminal leader sequenceRate of importArginine analog canavanineViral regulatory elementsImmunoprecipitation of extractsMitochondrial localizationCDNA sequenceRegulatory elementsLeader sequenceDNA sequencesEnzyme precursorsMitochondrial enzymesCell extractsDihydrofolate reductaseEnzymatic activityBlot analysisNormal precursorsResiduesSubunitsA leader peptide is sufficient to direct mitochondrial import of a chimeric protein.
Horwich A, Kalousek F, Mellman I, Rosenberg L. A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. The EMBO Journal 1985, 4: 1129-1135. PMID: 3891325, PMCID: PMC554314, DOI: 10.1002/j.1460-2075.1985.tb03750.x.Peer-Reviewed Original ResearchConceptsChimeric precursor proteinsMitochondrial importLeader peptideChimeric precursorsDihydrofolate reductaseMost mitochondrial proteinsPost-translational importMutant CHO cell linesCloned nucleotide sequencePrecursor proteinOrnithine transcarbamylaseCell-free systemCHO cell linesEnzyme dihydrofolate reductaseMitochondrial proteinsMitochondrial localizationRegulatory elementsLeader sequenceNucleotide sequenceStable transformantsAdditional proteinsSelectable markerChimeric proteinLarger precursorIntact cells