2020
Genetic characterization of an aggressive optic nerve pilocytic glioma
Hong CS, Fliney G, Fisayo A, An Y, Gopal PP, Omuro A, Pointdujour-Lim R, Erson-Omay EZ, Omay SB. Genetic characterization of an aggressive optic nerve pilocytic glioma. Brain Tumor Pathology 2020, 38: 59-63. PMID: 33098465, PMCID: PMC7585354, DOI: 10.1007/s10014-020-00383-x.Peer-Reviewed Original ResearchConceptsOptic nerve gliomaLeft optic nerve sheathLeft-sided visual lossSporadic adult casesOptic nerve sheathNeurofibromatosis type 1 syndromeType 1 syndromeWhole-exome sequencingEmpiric managementVisual lossFocal radiotherapyOptic nervePediatric populationNerve sheathOpen biopsyAdult casesBiopsy specimenBenign histopathologyClinical prognosticationPilocytic astrocytomaComplex tumorsActionable targetsVisual pathwayAdult populationTumor progressionA phase II study of dose-dense temozolomide and lapatinib for recurrent low-grade and anaplastic supratentorial, infratentorial, and spinal cord ependymoma
Gilbert MR, Yuan Y, Wu J, Mendoza T, Vera E, Omuro A, Lieberman F, Robins HI, Gerstner ER, Wu J, Wen PY, Mikkelsen T, Aldape K, Armstrong TS. A phase II study of dose-dense temozolomide and lapatinib for recurrent low-grade and anaplastic supratentorial, infratentorial, and spinal cord ependymoma. Neuro-Oncology 2020, 23: 468-477. PMID: 33085768, PMCID: PMC7992893, DOI: 10.1093/neuonc/noaa240.Peer-Reviewed Original ResearchConceptsProgression-free survivalDose-dense temozolomideMedian progression-free survivalAdult patientsObjective responseSymptom burdenClinical trialsRecurrent ependymomaMD Anderson Symptom Inventory-Brain TumorProspective phase II clinical trialMedian Karnofsky performance statusPhase II clinical trialDemonstrated clinical activityModerate-severe painPatients age 18Phase II studyKarnofsky performance statusProspective clinical trialsSpinal cord tumorsStandard medical treatmentPrimary outcome measureSpinal cord ependymomasDisease-related symptomsExpression of ErbB2Daily lapatinibEffect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma
Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, Phuphanich S, Sepulveda JM, De Souza P, Sahebjam S, Carleton M, Tatsuoka K, Taitt C, Zwirtes R, Sampson J, Weller M. Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma. JAMA Oncology 2020, 6: 1003-1010. PMID: 32437507, PMCID: PMC7243167, DOI: 10.1001/jamaoncol.2020.1024.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAngiogenesis InhibitorsAntineoplastic Agents, ImmunologicalBevacizumabBrain NeoplasmsDNA Modification MethylasesDNA Repair EnzymesFemaleGlioblastomaHumansImmune Checkpoint InhibitorsMaleMiddle AgedNeoplasm Recurrence, LocalNivolumabProgrammed Cell Death 1 ReceptorTemozolomideTreatment OutcomeTumor Suppressor ProteinsYoung AdultConceptsTreatment-related adverse eventsPhase 3 clinical trialsPrimary end pointOverall survivalRecurrent glioblastomaClinical trialsMedian OSGrade 3/4 treatment-related adverse eventsRandomized phase 3 clinical trialSingle-agent PD-1 blockadeEnd pointEffects of nivolumabUnacceptable toxic effectsMedian overall survivalObjective response ratePD-1 blockadeOverall patient populationImmune checkpoint blockadeData cutoffAdverse eventsCheckpoint blockadeFirst recurrenceInhibitor therapyClinical outcomesSafety profilePhase I clinical trial of temsirolimus and perifosine for recurrent glioblastoma
Kaley TJ, Panageas KS, Pentsova EI, Mellinghoff IK, Nolan C, Gavrilovic I, DeAngelis LM, Abrey LE, Holland EC, Omuro A, Lacouture ME, Ludwig E, Lassman AB. Phase I clinical trial of temsirolimus and perifosine for recurrent glioblastoma. Annals Of Clinical And Translational Neurology 2020, 7: 429-436. PMID: 32293798, PMCID: PMC7187704, DOI: 10.1002/acn3.51009.Peer-Reviewed Original ResearchConceptsRecurrent malignant gliomaDose-limiting toxicityMTOR inhibitor temsirolimusMalignant gliomasAkt inhibitor perifosinePhase I clinical trialDose level 3Dose level 7Phase II doseSynergistic anti-tumor effectKarnofsky performance statusPhase I trialDeadly primary brain cancerPI3K/Akt/mTOR axisPrimary brain cancerAkt/mTOR axisAnti-tumor effectsPotential therapeutic targetMost malignant gliomasPrior therapyTemsirolimus dosePerformance statusI trialIntracerebral hemorrhageCombined therapy
2019
Longitudinal cognitive assessment in patients with primary CNS lymphoma treated with induction chemotherapy followed by reduced-dose whole-brain radiotherapy or autologous stem cell transplantation
Correa DD, Braun E, Kryza-Lacombe M, Ho KW, Reiner AS, Panageas KS, Yahalom J, Sauter CS, Abrey LE, DeAngelis LM, Omuro A. Longitudinal cognitive assessment in patients with primary CNS lymphoma treated with induction chemotherapy followed by reduced-dose whole-brain radiotherapy or autologous stem cell transplantation. Journal Of Neuro-Oncology 2019, 144: 553-562. PMID: 31377920, PMCID: PMC7392129, DOI: 10.1007/s11060-019-03257-1.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic Combined Chemotherapy ProtocolsCentral Nervous System NeoplasmsCognitionCombined Modality TherapyCranial IrradiationFemaleFollow-Up StudiesHematopoietic Stem Cell TransplantationHumansInduction ChemotherapyLongitudinal StudiesLymphomaMaleMiddle AgedPrognosisQuality of LifeSurvival RateTransplantation, AutologousYoung AdultConceptsWhole brain radiotherapyReduced-dose whole-brain radiotherapyPrimary central nervous system lymphomaHDC-ASCTCortical atrophyAttention/executive functionPCNSL patientsAutologous stem cell transplantConsolidation whole-brain radiotherapyAutologous stem cell transplantationCentral nervous system lymphomaCognitive functionIntroductionThe standard treatmentLongitudinal cognitive assessmentsProgression-free patientsHigh-dose chemotherapyMethotrexate-based chemotherapyLong-term remissionPrimary CNS lymphomaNervous system lymphomaStem cell transplantStem cell transplantationBrain structure abnormalitiesPost-induction chemotherapyWhite matter diseaseSequencing and curation strategies for identifying candidate glioblastoma treatments
Frank MO, Koyama T, Rhrissorrakrai K, Robine N, Utro F, Emde AK, Chen BJ, Arora K, Shah M, Geiger H, Felice V, Dikoglu E, Rahman S, Fang A, Vacic V, Bergmann EA, Vogel JLM, Reeves C, Khaira D, Calabro A, Kim D, Lamendola-Essel MF, Esteves C, Agius P, Stolte C, Boockvar J, Demopoulos A, Placantonakis DG, Golfinos JG, Brennan C, Bruce J, Lassman AB, Canoll P, Grommes C, Daras M, Diamond E, Omuro A, Pentsova E, Orange DE, Harvey SJ, Posner JB, Michelini VV, Jobanputra V, Zody MC, Kelly J, Parida L, Wrzeszczynski KO, Royyuru AK, Darnell RB. Sequencing and curation strategies for identifying candidate glioblastoma treatments. BMC Medical Genomics 2019, 12: 56. PMID: 31023376, PMCID: PMC6485090, DOI: 10.1186/s12920-019-0500-0.Peer-Reviewed Original ResearchConceptsPotential treatment optionClinical research studiesWhole-genome sequencingPharmacologic interventionsCancer patientsTreatment optionsClinical resultsPatientsConclusionThese resultsGlioblastoma treatmentPotential cancer treatmentPanel sequencingActionable variantsCancer treatmentGlioblastoma tumorsSame variantSequencing assaysDrug targetsRNA sequencingRNA-seqTreatmentNew York CitySequencingTumorsCliniciansResidual Tumor Volume, Cell Volume Fraction, and Tumor Cell Kill During Fractionated Chemoradiation Therapy of Human Glioblastoma using Quantitative Sodium MR Imaging
Thulborn KR, Lu A, Atkinson IC, Pauliah M, Beal K, Chan TA, Omuro A, Yamada J, Bradbury MS. Residual Tumor Volume, Cell Volume Fraction, and Tumor Cell Kill During Fractionated Chemoradiation Therapy of Human Glioblastoma using Quantitative Sodium MR Imaging. Clinical Cancer Research 2019, 25: 1226-1232. PMID: 30487127, PMCID: PMC7462306, DOI: 10.1158/1078-0432.ccr-18-2079.Peer-Reviewed Original ResearchConceptsResidual tumor volumeTumor cell killTissue sodium concentrationChemoradiation therapyOverall survivalHuman glioblastomaTumor volumeQuantitative sodium MR imagingCell killQuantitative sodium MRITumor cellsVariable tumor responseSodium MRITwo-compartment modelTumor resectionTumor responseDisease progressionSodium MR imagingTumor marginsMR imagingTherapyGlioblastomaTreatment volumeCancer cellsSodium concentrationBuparlisib in Patients With Recurrent Glioblastoma Harboring Phosphatidylinositol 3-Kinase Pathway Activation: An Open-Label, Multicenter, Multi-Arm, Phase II Trial
Wen PY, Touat M, Alexander BM, Mellinghoff IK, Ramkissoon S, McCluskey CS, Pelton K, Haidar S, Basu SS, Gaffey SC, Brown LE, Martinez-Ledesma JE, Wu S, Kim J, Wei W, Park MA, Huse JT, Kuhn JG, Rinne ML, Colman H, Agar NYR, Omuro AM, DeAngelis LM, Gilbert MR, de Groot JF, Cloughesy TF, S. A, Roberts TM, Zhao JJ, Lee EQ, Nayak L, Heath JR, Horky LL, Batchelor TT, Beroukhim R, Chang SM, Ligon AH, Dunn IF, Koul D, Young GS, Prados MD, Reardon DA, Yung WKA, Ligon KL. Buparlisib in Patients With Recurrent Glioblastoma Harboring Phosphatidylinositol 3-Kinase Pathway Activation: An Open-Label, Multicenter, Multi-Arm, Phase II Trial. Journal Of Clinical Oncology 2019, 37: jco.18.01207. PMID: 30715997, PMCID: PMC6553812, DOI: 10.1200/jco.18.01207.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAminopyridinesAntineoplastic AgentsBrain NeoplasmsChemotherapy, AdjuvantDisease ProgressionEnzyme ActivationFemaleGlioblastomaHumansMaleMiddle AgedMorpholinesNeoadjuvant TherapyNeoplasm Recurrence, LocalPhosphatidylinositol 3-KinasePhosphoinositide-3 Kinase InhibitorsProgression-Free SurvivalTime FactorsConceptsPhase II trialCohort 2Cohort 1PI3K pathwayTumor tissueII trialRecurrent glioblastomaBrain penetrationPan-PI3K inhibitor buparlisibPathway inhibitionPathway activationCommon grade 3K pathwayPrimary end pointGreater adverse eventsProgression-free survivalPI3K pathway inhibitionPI3K pathway activationPlasma drug levelsSingle-agent efficacySignificant brain penetrationPI3K inhibitorsMedian PFSOpen labelAdverse events
2018
Multicenter Phase IB Trial of Carboxyamidotriazole Orotate and Temozolomide for Recurrent and Newly Diagnosed Glioblastoma and Other Anaplastic Gliomas.
Omuro A, Beal K, McNeill K, Young RJ, Thomas A, Lin X, Terziev R, Kaley TJ, DeAngelis LM, Daras M, Gavrilovic IT, Mellinghoff I, Diamond EL, McKeown A, Manne M, Caterfino A, Patel K, Bavisotto L, Gorman G, Lamson M, Gutin P, Tabar V, Chakravarty D, Chan TA, Brennan CW, Garrett-Mayer E, Karmali RA, Pentsova E. Multicenter Phase IB Trial of Carboxyamidotriazole Orotate and Temozolomide for Recurrent and Newly Diagnosed Glioblastoma and Other Anaplastic Gliomas. Journal Of Clinical Oncology 2018, 36: 1702-1709. PMID: 29683790, PMCID: PMC5993168, DOI: 10.1200/jco.2017.76.9992.Peer-Reviewed Original ResearchConceptsAnaplastic gliomasCohort 2Cohort 1Median progression-free survivalFavorable brain penetrationMedian overall survivalPhase Ib studyPhase Ib trialPhase II doseProgression-free survivalRecurrent anaplastic gliomasDependent calcium channelsNovel oral inhibitorSignal of activityMismatch repair genesIb trialTreat populationMethylguanine-DNA methyltransferaseOverall survivalComplete responseFlat doseOral inhibitorBrain penetrationResults FortyTherapeutic concentrationsIn Vivo PET Assay of Tumor Glutamine Flux and Metabolism: In-Human Trial of 18F-(2S,4R)-4-Fluoroglutamine.
Dunphy MPS, Harding JJ, Venneti S, Zhang H, Burnazi EM, Bromberg J, Omuro AM, Hsieh JJ, Mellinghoff IK, Staton K, Pressl C, Beattie BJ, Zanzonico PB, Gerecitano JF, Kelsen DP, Weber W, Lyashchenko SK, Kung HF, Lewis JS. In Vivo PET Assay of Tumor Glutamine Flux and Metabolism: In-Human Trial of 18F-(2S,4R)-4-Fluoroglutamine. Radiology 2018, 287: 667-675. PMID: 29388903, PMCID: PMC5929369, DOI: 10.1148/radiol.2017162610.Peer-Reviewed Original ResearchConceptsPositron emission tomographyDifferent cancer typesCancer typesAcid levelsFisher's exact testAmino acid levelsInvestigational new drug applicationGlutamine metabolismInstitutional review boardFluorodeoxyglucose avidityAdult patientsIntravenous bolusAcute fastingAggressive tumorsClinical safetyPotential tumor biomarkerPET scansPatientsExact testHelsinki DeclarationDrug AdministrationNew drug applicationsEmission tomographyTumorsInformed consentRadiographic patterns of recurrence and pathologic correlation in malignant gliomas treated with bevacizumab
Thomas A, Rosenblum M, Karimi S, DeAngelis LM, Omuro A, Kaley TJ. Radiographic patterns of recurrence and pathologic correlation in malignant gliomas treated with bevacizumab. CNS Oncology 2018, 07: 7-13. PMID: 29388793, PMCID: PMC6001559, DOI: 10.2217/cns-2017-0025.Peer-Reviewed Original ResearchConceptsMalignant gliomasRecurrence patternsDiffusion-weighted imaging abnormalitiesDiffusion-weighted imagingStandard clinical settingMG patientsImaging abnormalitiesMRI abnormalitiesPathologic findingsTumor recurrenceRadiographic patternsPathologic correlationBevacizumabClinical settingNecrosisPatientsRecurrenceRecent reportsTumorsGliomasAbnormalitiesLeptomeningealSurgery
2017
Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143
Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T, Voloschin A, Ramkissoon SH, Ligon KL, Latek R, Zwirtes R, Strauss L, Paliwal P, Harbison CT, Reardon DA, Sampson JH. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro-Oncology 2017, 20: 674-686. PMID: 29106665, PMCID: PMC5892140, DOI: 10.1093/neuonc/nox208.Peer-Reviewed Original ResearchConceptsAdverse eventsRecurrent glioblastomaCommon treatment-related adverse eventsTreatment-related adverse eventsDeath ligand 1 (PD-L1) expressionEffects of nivolumabExploratory efficacy outcomesSafety/tolerabilityFindings merit further investigationLigand 1 expressionCheckMate 143Ipilimumab doseNivolumab monotherapyStable diseaseAlternative regimenEfficacy outcomesRadiographic progressionMost patientsPartial responseNivolumabIpilimumabMerit further investigationPatientsI cohortFurther evaluationIbrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma
Grommes C, Pastore A, Palaskas N, Tang SS, Campos C, Schartz D, Codega P, Nichol D, Clark O, Hsieh WY, Rohle D, Rosenblum M, Viale A, Tabar VS, Brennan CW, Gavrilovic IT, Kaley TJ, Nolan CP, Omuro A, Pentsova E, Thomas AA, Tsyvkin E, Noy A, Palomba ML, Hamlin P, Sauter CS, Moskowitz CH, Wolfe J, Dogan A, Won M, Glass J, Peak S, Lallana EC, Hatzoglou V, Reiner AS, Gutin PH, Huse JT, Panageas KS, Graeber TG, Schultz N, DeAngelis LM, Mellinghoff IK. Ibrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma. Cancer Discovery 2017, 7: 1018-1029. PMID: 28619981, PMCID: PMC5581705, DOI: 10.1158/2159-8290.cd-17-0613.Peer-Reviewed Original ResearchMeSH KeywordsAdenineAdultAgammaglobulinaemia Tyrosine KinaseAgedAged, 80 and overAntineoplastic AgentsCARD Signaling Adaptor ProteinsCentral Nervous System NeoplasmsDrug Resistance, NeoplasmFemaleGuanylate CyclaseHumansLymphoma, B-CellMaleMaximum Tolerated DoseMiddle AgedMutationPiperidinesProtein Kinase InhibitorsProtein-Tyrosine KinasesPyrazolesPyrimidinesTreatment OutcomeYoung AdultConceptsPrimary central nervous system lymphomaBruton's tyrosine kinaseB-cell lymphomaRefractory B-cell lymphomaB cell antigen receptorCentral nervous system lymphomaRole of BTKDiffuse large B-cell lymphomaLarge B-cell lymphomaPhase I clinical trialClass BTK inhibitorIncomplete tumor responseNervous system lymphomaToll-like receptorsPI3K/mTORIbrutinib responseCNS lymphomaClinical responseComplete responseReceptor-associated proteinSystem lymphomaActivation markersTumor responseClinical trialsPCNSL cellsCerebrospinal fluid circulating tumor cells: a novel tool to diagnose leptomeningeal metastases from epithelial tumors
Lin X, Fleisher M, Rosenblum M, Lin O, Boire A, Briggs S, Bensman Y, Hurtado B, Shagabayeva L, DeAngelis LM, Panageas KS, Omuro A, Pentsova EI. Cerebrospinal fluid circulating tumor cells: a novel tool to diagnose leptomeningeal metastases from epithelial tumors. Neuro-Oncology 2017, 19: 1248-1254. PMID: 28821205, PMCID: PMC5570249, DOI: 10.1093/neuonc/nox066.Peer-Reviewed Original ResearchConceptsDiagnosis of LMLeptomeningeal metastasesCSF CTCsCSF cytologyEpithelial tumorsMRI findingsOptimal cutoffInstitutional review board-approved prospective studyTumor cellsNegative predictive value 97ROC analysisRare cell capture technologyPositive predictive value 90Positive CSF cytologyCSF of patientsSolid tumor patientsPrevious pilot studyClinical suspicionProspective studyCytology examinationTumor patientsLarge cohortCerebrospinal fluidPatientsStandard MRIMulticenter phase II study of temozolomide and myeloablative chemotherapy with autologous stem cell transplant for newly diagnosed anaplastic oligodendroglioma
Thomas AA, Abrey LE, Terziev R, Raizer J, Martinez NL, Forsyth P, Paleologos N, Matasar M, Sauter CS, Moskowitz C, Nimer SD, DeAngelis LM, Kaley T, Grimm S, Louis DN, Cairncross JG, Panageas KS, Briggs S, Faivre G, Mohile NA, Mehta J, Jonsson P, Chakravarty D, Gao J, Schultz N, Brennan CW, Huse JT, Omuro A. Multicenter phase II study of temozolomide and myeloablative chemotherapy with autologous stem cell transplant for newly diagnosed anaplastic oligodendroglioma. Neuro-Oncology 2017, 19: 1380-1390. PMID: 28472509, PMCID: PMC5596171, DOI: 10.1093/neuonc/nox086.Peer-Reviewed Original ResearchConceptsAutologous stem cell transplantProgression-free survivalHigh-dose chemotherapyStem cell transplantAnaplastic oligodendrogliomaAnaplastic oligoastrocytomaHDC-ASCTMulticenter phase II studyMyeloablative high-dose chemotherapyChemotherapy-based approachesCycles of temozolomideOverall survival 93Phase II studyRadiation-related toxicityUnexpected adverse eventsNext-generation sequencingChemotherapy-sensitive tumorsWide molecular heterogeneityToxic deathsAdverse eventsII studyMyeloablative chemotherapyProspective trialIntact patientsCell transplantDynamic contrast‐enhanced MRI perfusion for differentiating between melanoma and lung cancer brain metastases
Hatzoglou V, Tisnado J, Mehta A, Peck KK, Daras M, Omuro AM, Beal K, Holodny AI. Dynamic contrast‐enhanced MRI perfusion for differentiating between melanoma and lung cancer brain metastases. Cancer Medicine 2017, 6: 761-767. PMID: 28303695, PMCID: PMC5387174, DOI: 10.1002/cam4.1046.Peer-Reviewed Original ResearchConceptsMelanoma brain metastasesNSCLC brain metastasesLung cancer brain metastasesBrain metastasesCancer brain metastasesCell lung cancer brain metastasesDCE-MRIPrimary brain tumorsDifferent primary sitesImportant clinical implicationsMann-Whitney U testVolume transfer coefficientTumor histologyMultiple malignanciesMRI perfusionBrain tumorsMetastasisPrimary siteConventional MRIClinical implicationsPerfusion parametersTumor microvasculatureROC analysisU testPlasma volumePhase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas
Nayak L, de Groot J, Wefel JS, Cloughesy TF, Lieberman F, Chang SM, Omuro A, Drappatz J, Batchelor TT, DeAngelis LM, Gilbert MR, Aldape KD, Yung AW, Fisher J, Ye X, Chen A, Grossman S, Prados M, Wen PY. Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas. Journal Of Neuro-Oncology 2017, 132: 181-188. PMID: 28116649, PMCID: PMC5588922, DOI: 10.1007/s11060-016-2357-9.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic Agents, AlkylatingBrain NeoplasmsChemotherapy, AdjuvantCombined Modality TherapyDacarbazineDrug Therapy, CombinationFemaleGliomaHumansMaleMiddle AgedNeuropsychological TestsReceptors, Vascular Endothelial Growth FactorRecombinant Fusion ProteinsTemozolomideTreatment OutcomeVascular Endothelial Growth Factor AConceptsHigh-grade gliomasPhase I trialI trialArm 2Arm 1Anti-vascular endothelial growth factor therapyAdult Brain Tumor ConsortiumEndothelial growth factor therapyRecombinant human fusion proteinGrowth factorFull treatment courseGrowth factor therapyPlacental growth factorSoluble decoy receptorHuman fusion proteinKPS 90Primary endpointFactor therapyDay regimenMedian ageTreatment courseArm 3Disease progressionMedian numberRadiation therapy
2016
A Comprehensive Assessment of Toxicities in Patients with Central Nervous System Lymphoma Undergoing Autologous Stem Cell Transplantation Using Thiotepa, Busulfan, and Cyclophosphamide Conditioning
Scordo M, Bhatt V, Hsu M, Omuro AM, Matasar MJ, DeAngelis LM, Dahi PB, Moskowitz CH, Giralt SA, Sauter CS. A Comprehensive Assessment of Toxicities in Patients with Central Nervous System Lymphoma Undergoing Autologous Stem Cell Transplantation Using Thiotepa, Busulfan, and Cyclophosphamide Conditioning. Transplantation And Cellular Therapy 2016, 23: 38-43. PMID: 27713090, PMCID: PMC5518313, DOI: 10.1016/j.bbmt.2016.09.024.Peer-Reviewed Original ResearchConceptsAutologous stem cell transplantationPrimary central nervous system lymphomaSecondary central nervous system lymphomaCentral nervous system lymphomaProgression-free survivalNervous system lymphomaTransplantation-related mortalityStem cell transplantationOverall survivalSystem lymphomaCyclophosphamide conditioningNonhematologic toxicityCell transplantationTreatment strategiesTime of ASCTFavorable progression-free survivalHigh-dose therapyBusulfan areaBusulfan dosingAdult patientsPatient characteristicsMedian numberToxicity burdenPatientsConsiderable toxicityMolecular and Clinical Effects of Notch Inhibition in Glioma Patients: A Phase 0/I Trial
Xu R, Shimizu F, Hovinga K, Beal K, Karimi S, Droms L, Peck KK, Gutin P, Iorgulescu JB, Kaley T, DeAngelis L, Pentsova E, Nolan C, Grommes C, Chan T, Bobrow D, Hormigo A, Cross JR, Wu N, Takebe N, Panageas K, Ivy P, Supko JG, Tabar V, Omuro A. Molecular and Clinical Effects of Notch Inhibition in Glioma Patients: A Phase 0/I Trial. Clinical Cancer Research 2016, 22: 4786-4796. PMID: 27154916, PMCID: PMC5050072, DOI: 10.1158/1078-0432.ccr-16-0048.Peer-Reviewed Original ResearchConceptsRecurrent tumorsCancer-initiating cell populationGamma secretase inhibitor RO4929097Blood-brain barrier disruptionBlood-brain barrier penetrationDose-limiting toxicityNotch intracellular domainPotential therapeutic optionSignificant decreaseRelative plasma volumeHigh-grade gliomasTumor explant culturesNotch pathwayI trialDismal prognosisTherapeutic optionsBarrier disruptionDrug exposureAnaplastic astrocytomaAngiogenic factorsTumor tissueAntiangiogenic roleTarget modulationDrug penetrationPerfusion MRILong-term survival in AIDS-related primary central nervous system lymphoma
Gupta NK, Nolan A, Omuro A, Reid EG, Wang CC, Mannis G, Jaglal M, Chavez JC, Rubinstein PG, Griffin A, Abrams DI, Hwang J, Kaplan LD, Luce JA, Volberding P, Treseler PA, Rubenstein JL. Long-term survival in AIDS-related primary central nervous system lymphoma. Neuro-Oncology 2016, 19: 99-108. PMID: 27576871, PMCID: PMC5193026, DOI: 10.1093/neuonc/now155.Peer-Reviewed Original ResearchConceptsCombination antiretroviral therapyWhole brain radiotherapyPrimary central nervous system lymphomaCentral nervous system lymphomaAR-PCNSLNervous system lymphomaHD-MTXLong-term survivalMulticenter analysisSystem lymphomaAdvent of cARTLong-term disease-free survivalLonger progression-free survivalSan Francisco General HospitalHigh-dose methotrexateDisease-free survivalProgression-free survivalOptimal therapeutic approachTherapy-related factorsFirst-line interventionPost-cART eraLong-term toxicityAntiretroviral therapyBrain radiotherapyFavorable survival