2023
Imaging metabolism of deuterated glucose in patients with primary brain tumors
Corbin Z, Liu Y, Fulbright R, Thaw-Poon S, Baehring J, Blondin N, Kim P, Omuro A, Chiang V, Moliterno J, Omay S, Piepmeier J, Rothman D, de Graaf R, De Feyter H. Imaging metabolism of deuterated glucose in patients with primary brain tumors. Proceedings Of The International Society For Magnetic Resonance In Medicine ... Scientific Meeting And Exhibition. 2023 DOI: 10.58530/2023/0142.Peer-Reviewed Original Research
2022
NIMG-02. PACS-INTEGRATED AUTO-SEGMENTATION WORKFLOW FOR BRAIN METASTASES USING NNU-NET
Jekel L, Bousabarah K, Lin M, Merkaj S, Kaur M, Avesta A, Aneja S, Omuro A, Chiang V, Scheffler B, Aboian M. NIMG-02. PACS-INTEGRATED AUTO-SEGMENTATION WORKFLOW FOR BRAIN METASTASES USING NNU-NET. Neuro-Oncology 2022, 24: vii162-vii162. PMCID: PMC9661012, DOI: 10.1093/neuonc/noac209.622.Peer-Reviewed Original ResearchPhase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter
Lim M, Weller M, Idbaih A, Steinbach J, Finocchiaro G, Raval RR, Ansstas G, Baehring J, Taylor JW, Honnorat J, Petrecca K, De Vos F, Wick A, Sumrall A, Sahebjam S, Mellinghoff IK, Kinoshita M, Roberts M, Slepetis R, Warad D, Leung D, Lee M, Reardon DA, Omuro A. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro-Oncology 2022, 24: 1935-1949. PMID: 35511454, PMCID: PMC9629431, DOI: 10.1093/neuonc/noac116.Peer-Reviewed Original ResearchConceptsProgression-free survivalOverall survivalMGMT promoterBaseline corticosteroidsTreatment-related adverse event ratesImmune checkpoint inhibitor nivolumabNew safety signalsPhase III trialsAdverse event ratesCheckpoint inhibitor nivolumabCare radiotherapyInhibitor nivolumabPrimary endpointIII trialsSame regimenExperience recurrenceNivolumabSafety signalsPlaceboPatientsRadiotherapyTemozolomideEvent ratesMonthsPhase IIIReal-time PACS-integrated longitudinal brain metastasis tracking tool provides comprehensive assessment of treatment response to radiosurgery
Petersen G, Bousabarah K, Verma T, von Reppert M, Jekel L, Gordem A, Jang B, Merkaj S, Fadel S, Owens R, Omuro A, Chiang V, Ikuta I, Lin M, Aboian MS. Real-time PACS-integrated longitudinal brain metastasis tracking tool provides comprehensive assessment of treatment response to radiosurgery. Neuro-Oncology Advances 2022, 4: vdac116. PMID: 36043121, PMCID: PMC9412827, DOI: 10.1093/noajnl/vdac116.Peer-Reviewed Original ResearchGamma KnifeTreatment responseBrain metastasis patientsFurther treatment planningNumber of lesionsMean followBrain metastasesMetastasis patientsMultiple lesionsDiagnostic followSingle patientStereotactic radiosurgeryPatientsLesionsIndividual lesionsPrevalenceAccurate surveillanceHeterogenous responseTreatment planningTreatmentFollowRadiosurgerySize assessmentComprehensive assessmentResponseNivolumab plus radiotherapy with or without temozolomide in newly diagnosed glioblastoma: Results from exploratory phase I cohorts of CheckMate 143
Omuro A, Reardon DA, Sampson JH, Baehring J, Sahebjam S, Cloughesy TF, Chalamandaris AG, Potter V, Butowski N, Lim M. Nivolumab plus radiotherapy with or without temozolomide in newly diagnosed glioblastoma: Results from exploratory phase I cohorts of CheckMate 143. Neuro-Oncology Advances 2022, 4: vdac025. PMID: 35402913, PMCID: PMC8989388, DOI: 10.1093/noajnl/vdac025.Peer-Reviewed Original ResearchSafety/tolerabilityNew safety signalsOverall survivalCheckMate 143Median OSSafety signalsGrade 3/4 treatment-related adverse eventsTreatment-related adverse eventsEfficacy of nivolumabImmune checkpoint inhibitionMedian overall survivalPhase 1 cohortFirst-line treatmentPart APrimary endpointSecondary endpointsAdverse eventsCheckpoint inhibitionPatientsI cohortNivolumabTemozolomideRadiotherapyMonthsPart B
2021
A Shortage of Neurologists – We Must Act Now
Majersik J, Ahmed A, Chen I, Shill H, Hanes GP, Pelak V, Hopp J, Omuro A, Kluger B, Leslie-Mazwi T. A Shortage of Neurologists – We Must Act Now. Neurology 2021, 96: 1122-1134. PMID: 33931527, DOI: 10.1212/wnl.0000000000012111.Peer-Reviewed Original ResearchHigh-level careAvailability of neurologistsQuality of lifeShortage of neurologistsPublic health crisisNeurologic disordersPatient outcomesNeurologic serviceNeurologic careAmerican AcademyPractice settingsNeurologistsFuture healthPrioritization of strategiesPatientsHealth crisisCareExpert opinionSustained mannerComparison of radiomic feature aggregation methods for patients with multiple tumors
Chang E, Joel MZ, Chang HY, Du J, Khanna O, Omuro A, Chiang V, Aneja S. Comparison of radiomic feature aggregation methods for patients with multiple tumors. Scientific Reports 2021, 11: 9758. PMID: 33963236, PMCID: PMC8105371, DOI: 10.1038/s41598-021-89114-6.Peer-Reviewed Original ResearchConceptsCox proportional hazards modelCox proportional hazardsProportional hazards modelBrain metastasesRadiomic featuresHazards modelProportional hazardsStandard Cox proportional hazards modelMultifocal brain metastasesMultiple brain metastasesNumber of patientsPatient-level outcomesHigher concordance indexRadiomic feature analysisRandom survival forest modelSurvival modelsDifferent tumor volumesMultifocal tumorsCancer outcomesMultiple tumorsMetastatic cancerConcordance indexTumor volumePatientsTumor types
2020
CTNI-50. NEUROCOGNITIVE FUNCTION (NCF) OF THE PHOTON COHORT IN NRG-BN001
Wefel J, DeMora L, Gondi V, Tsien C, Chenevert T, Gilbert M, Omuro A, Cao Y, Srinivasan A, Rogers L, Shi W, Nedzi L, Chan M, Suh J, Battiste J, Mishra M, Shivnani A, Movsas B, Mehta M. CTNI-50. NEUROCOGNITIVE FUNCTION (NCF) OF THE PHOTON COHORT IN NRG-BN001. Neuro-Oncology 2020, 22: ii53-ii54. PMCID: PMC7651205, DOI: 10.1093/neuonc/noaa215.216.Peer-Reviewed Original ResearchNeurocognitive functionNCF testsSD-RTCycle 3Ongoing randomized phase II trialRandomized phase II trialNon-significant timeSecondary endpoint analysisPhase II trialMixed effects longitudinal modelsTreatment effect interactionEvaluable patientsNCF outcomesPhoton cohortsEligible patientsII trialOverall survivalPatient refusalRadiation therapyGroup 2Common reasonGroup 1Arm differencesPatientsEffects longitudinal modelsCerebrospinal fluid circulating tumor cells as a quantifiable measurement of leptomeningeal metastases in patients with HER2 positive cancer
Malani R, Fleisher M, Kumthekar P, Lin X, Omuro A, Groves MD, Lin NU, Melisko M, Lassman AB, Jeyapalan S, Seidman A, Skakodub A, Boire A, DeAngelis LM, Rosenblum M, Raizer J, Pentsova E. Cerebrospinal fluid circulating tumor cells as a quantifiable measurement of leptomeningeal metastases in patients with HER2 positive cancer. Journal Of Neuro-Oncology 2020, 148: 599-606. PMID: 32506369, PMCID: PMC7438284, DOI: 10.1007/s11060-020-03555-z.Peer-Reviewed Original ResearchConceptsLeptomeningeal metastasesCSF cytologyCSF CTCsCTC enumerationCerebrospinal fluidIT trastuzumabPhase I/II dose escalation trialCentral nervous system compartmentTumor cellsHER2/neu positivityHER2/neu expressionDose-escalation trialHER2-positive cancersIntrathecal trastuzumabEscalation trialRadiographic responseTumor burdenPositive cancersNeu expressionNeu positivityConclusionOur studyPatientsDay 1Epithelial cancersCancer
2019
Complications associated with immunotherapy for brain metastases.
Tran TT, Jilaveanu LB, Omuro A, Chiang VL, Huttner A, Kluger HM. Complications associated with immunotherapy for brain metastases. Current Opinion In Neurology 2019, 32: 907-916. PMID: 31577604, PMCID: PMC7398556, DOI: 10.1097/wco.0000000000000756.Peer-Reviewed Original ResearchConceptsBrain metastasesNeurologic toxicityImmune therapyPhase 2 clinical trialCheckpoint inhibitor therapyImmune checkpoint inhibitorsMultiple phase 2 clinical trialsTreatment-related morbidityBrain metastatic diseaseSymptomatic edemaCheckpoint inhibitorsAdverse eventsDurable responsesMedian survivalMetastatic diseaseInhibitor therapyMore patientsIntracranial activityPatient groupRadiation necrosisClinical trialsTherapy trialsMultidisciplinary teamMetastasisPatientsSequencing and curation strategies for identifying candidate glioblastoma treatments
Frank MO, Koyama T, Rhrissorrakrai K, Robine N, Utro F, Emde AK, Chen BJ, Arora K, Shah M, Geiger H, Felice V, Dikoglu E, Rahman S, Fang A, Vacic V, Bergmann EA, Vogel JLM, Reeves C, Khaira D, Calabro A, Kim D, Lamendola-Essel MF, Esteves C, Agius P, Stolte C, Boockvar J, Demopoulos A, Placantonakis DG, Golfinos JG, Brennan C, Bruce J, Lassman AB, Canoll P, Grommes C, Daras M, Diamond E, Omuro A, Pentsova E, Orange DE, Harvey SJ, Posner JB, Michelini VV, Jobanputra V, Zody MC, Kelly J, Parida L, Wrzeszczynski KO, Royyuru AK, Darnell RB. Sequencing and curation strategies for identifying candidate glioblastoma treatments. BMC Medical Genomics 2019, 12: 56. PMID: 31023376, PMCID: PMC6485090, DOI: 10.1186/s12920-019-0500-0.Peer-Reviewed Original ResearchConceptsPotential treatment optionClinical research studiesWhole-genome sequencingPharmacologic interventionsCancer patientsTreatment optionsClinical resultsPatientsConclusionThese resultsGlioblastoma treatmentPotential cancer treatmentPanel sequencingActionable variantsCancer treatmentGlioblastoma tumorsSame variantSequencing assaysDrug targetsRNA sequencingRNA-seqTreatmentNew York CitySequencingTumorsCliniciansTumor mutational load predicts survival after immunotherapy across multiple cancer types
Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, Kaley TJ, Kendall SM, Motzer RJ, Hakimi AA, Voss MH, Russo P, Rosenberg J, Iyer G, Bochner BH, Bajorin DF, Al-Ahmadie HA, Chaft JE, Rudin CM, Riely GJ, Baxi S, Ho AL, Wong RJ, Pfister DG, Wolchok JD, Barker CA, Gutin PH, Brennan CW, Tabar V, Mellinghoff IK, DeAngelis LM, Ariyan CE, Lee N, Tap WD, Gounder MM, D’Angelo S, Saltz L, Stadler ZK, Scher HI, Baselga J, Razavi P, Klebanoff CA, Yaeger R, Segal NH, Ku GY, DeMatteo RP, Ladanyi M, Rizvi NA, Berger MF, Riaz N, Solit DB, Chan TA, Morris LGT. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nature Genetics 2019, 51: 202-206. PMID: 30643254, PMCID: PMC6365097, DOI: 10.1038/s41588-018-0312-8.Peer-Reviewed Original ResearchConceptsTumor mutational burdenHigh tumor mutational burdenImproved survivalCancer typesImmune checkpoint inhibitor treatmentAdvanced cancer patientsBetter overall survivalCheckpoint inhibitor treatmentMultiple cancer typesClinical responseOverall survivalCancer patientsPredictive biomarkersCancer histologyMetastatic cancerMutational burdenPatientsInhibitor treatmentNext-generation sequencingSurvivalICIMutational loadUniversal definitionAssociationImmunotherapy
2018
Radiographic patterns of recurrence and pathologic correlation in malignant gliomas treated with bevacizumab
Thomas A, Rosenblum M, Karimi S, DeAngelis LM, Omuro A, Kaley TJ. Radiographic patterns of recurrence and pathologic correlation in malignant gliomas treated with bevacizumab. CNS Oncology 2018, 07: 7-13. PMID: 29388793, PMCID: PMC6001559, DOI: 10.2217/cns-2017-0025.Peer-Reviewed Original ResearchConceptsMalignant gliomasRecurrence patternsDiffusion-weighted imaging abnormalitiesDiffusion-weighted imagingStandard clinical settingMG patientsImaging abnormalitiesMRI abnormalitiesPathologic findingsTumor recurrenceRadiographic patternsPathologic correlationBevacizumabClinical settingNecrosisPatientsRecurrenceRecent reportsTumorsGliomasAbnormalitiesLeptomeningealSurgeryIn Vivo PET Assay of Tumor Glutamine Flux and Metabolism: In-Human Trial of 18F-(2S,4R)-4-Fluoroglutamine.
Dunphy MPS, Harding JJ, Venneti S, Zhang H, Burnazi EM, Bromberg J, Omuro AM, Hsieh JJ, Mellinghoff IK, Staton K, Pressl C, Beattie BJ, Zanzonico PB, Gerecitano JF, Kelsen DP, Weber W, Lyashchenko SK, Kung HF, Lewis JS. In Vivo PET Assay of Tumor Glutamine Flux and Metabolism: In-Human Trial of 18F-(2S,4R)-4-Fluoroglutamine. Radiology 2018, 287: 667-675. PMID: 29388903, PMCID: PMC5929369, DOI: 10.1148/radiol.2017162610.Peer-Reviewed Original ResearchConceptsPositron emission tomographyDifferent cancer typesCancer typesAcid levelsFisher's exact testAmino acid levelsInvestigational new drug applicationGlutamine metabolismInstitutional review boardFluorodeoxyglucose avidityAdult patientsIntravenous bolusAcute fastingAggressive tumorsClinical safetyPotential tumor biomarkerPET scansPatientsExact testHelsinki DeclarationDrug AdministrationNew drug applicationsEmission tomographyTumorsInformed consent
2017
CMET-04. CEREBROSPINAL FLUID CIRCULATING TUMOR CELLS (CSF CTC) FOR PATIENT MONITORING AND RESPONSE TO TREATMENT
Malani R, Fleisher M, Lin X, Omuro A, Groves M, Lin N, Melisko M, Lassman A, Jeyapalan S, Briggs S, DeAngelis L, Raizer J, Pentsova E. CMET-04. CEREBROSPINAL FLUID CIRCULATING TUMOR CELLS (CSF CTC) FOR PATIENT MONITORING AND RESPONSE TO TREATMENT. Neuro-Oncology 2017, 19: vi39-vi39. PMCID: PMC5692986, DOI: 10.1093/neuonc/nox168.153.Peer-Reviewed Original ResearchCSF CTCsLeptomeningeal metastasesCTC enumerationLM progressionCellSearch systemHER2 expressionTreatment responsePhase I/II dose escalation trialDose-escalation trialPositive CSF cytologyCycles of treatmentNumber of CTCsCycle 1IT trastuzumabCirculating Tumor CellsEscalation trialIntrathecal therapyRadiographic responseVentricular reservoirRadiographic worseningCSF cytologyEarly biomarkersHER2 analysisPatientsDay 1Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143
Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T, Voloschin A, Ramkissoon SH, Ligon KL, Latek R, Zwirtes R, Strauss L, Paliwal P, Harbison CT, Reardon DA, Sampson JH. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro-Oncology 2017, 20: 674-686. PMID: 29106665, PMCID: PMC5892140, DOI: 10.1093/neuonc/nox208.Peer-Reviewed Original ResearchConceptsAdverse eventsRecurrent glioblastomaCommon treatment-related adverse eventsTreatment-related adverse eventsDeath ligand 1 (PD-L1) expressionEffects of nivolumabExploratory efficacy outcomesSafety/tolerabilityFindings merit further investigationLigand 1 expressionCheckMate 143Ipilimumab doseNivolumab monotherapyStable diseaseAlternative regimenEfficacy outcomesRadiographic progressionMost patientsPartial responseNivolumabIpilimumabMerit further investigationPatientsI cohortFurther evaluationCerebrospinal fluid circulating tumor cells: a novel tool to diagnose leptomeningeal metastases from epithelial tumors
Lin X, Fleisher M, Rosenblum M, Lin O, Boire A, Briggs S, Bensman Y, Hurtado B, Shagabayeva L, DeAngelis LM, Panageas KS, Omuro A, Pentsova EI. Cerebrospinal fluid circulating tumor cells: a novel tool to diagnose leptomeningeal metastases from epithelial tumors. Neuro-Oncology 2017, 19: 1248-1254. PMID: 28821205, PMCID: PMC5570249, DOI: 10.1093/neuonc/nox066.Peer-Reviewed Original ResearchConceptsDiagnosis of LMLeptomeningeal metastasesCSF CTCsCSF cytologyEpithelial tumorsMRI findingsOptimal cutoffInstitutional review board-approved prospective studyTumor cellsNegative predictive value 97ROC analysisRare cell capture technologyPositive predictive value 90Positive CSF cytologyCSF of patientsSolid tumor patientsPrevious pilot studyClinical suspicionProspective studyCytology examinationTumor patientsLarge cohortCerebrospinal fluidPatientsStandard MRIMutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, Hellmann MD, Barron DA, Schram AM, Hameed M, Dogan S, Ross DS, Hechtman JF, DeLair DF, Yao J, Mandelker DL, Cheng DT, Chandramohan R, Mohanty AS, Ptashkin RN, Jayakumaran G, Prasad M, Syed MH, Rema AB, Liu ZY, Nafa K, Borsu L, Sadowska J, Casanova J, Bacares R, Kiecka IJ, Razumova A, Son JB, Stewart L, Baldi T, Mullaney KA, Al-Ahmadie H, Vakiani E, Abeshouse AA, Penson AV, Jonsson P, Camacho N, Chang MT, Won HH, Gross BE, Kundra R, Heins ZJ, Chen HW, Phillips S, Zhang H, Wang J, Ochoa A, Wills J, Eubank M, Thomas SB, Gardos SM, Reales DN, Galle J, Durany R, Cambria R, Abida W, Cercek A, Feldman DR, Gounder MM, Hakimi AA, Harding JJ, Iyer G, Janjigian YY, Jordan EJ, Kelly CM, Lowery MA, Morris LGT, Omuro AM, Raj N, Razavi P, Shoushtari AN, Shukla N, Soumerai TE, Varghese AM, Yaeger R, Coleman J, Bochner B, Riely GJ, Saltz LB, Scher HI, Sabbatini PJ, Robson ME, Klimstra DS, Taylor BS, Baselga J, Schultz N, Hyman DM, Arcila ME, Solit DB, Ladanyi M, Berger MF. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine 2017, 23: 703-713. PMID: 28481359, PMCID: PMC5461196, DOI: 10.1038/nm.4333.Peer-Reviewed Original ResearchConceptsMemorial Sloan-Kettering Cancer CenterCancer-related genesProspective clinical sequencingAdvanced solid cancersSequencing platformsStructural variantsGenomic landscapeGenomic mutationsDetailed clinical annotationMutational landscapeSequencing resultsNumber alterationsCancer CenterPatient enrollmentClinical trialsMSK-IMPACTMetastatic cancerSolid cancersNew insightsNormal tissuesClinical sequencingCancer therapyPatientsCancerClinical annotation
2016
MPTH-01. ARE MUTATIONS IN MISMATCH REPAIR (MMR) GENES OUR NEXT BIOMARKER OF ALKYLATING AGENT INDUCED HYPERMUTATOR PHENOTYPE? PRELIMINARY RESULTS FROM THE IVY PRECISION TRIAL
Kuhn J, Chen R, Clarke J, Chang S, Cloughesy T, Colman H, Wen P, Mellinghoff I, Ligon K, de Groot J, Batchelor T, Omuro A, Taylor J, Butowski N, Halperin R, Tran N, Carpten J, Craig D, Byron S, Berens M, Prados M. MPTH-01. ARE MUTATIONS IN MISMATCH REPAIR (MMR) GENES OUR NEXT BIOMARKER OF ALKYLATING AGENT INDUCED HYPERMUTATOR PHENOTYPE? PRELIMINARY RESULTS FROM THE IVY PRECISION TRIAL. Neuro-Oncology 2016, 18: vi105-vi105. DOI: 10.1093/neuonc/now212.440.Peer-Reviewed Original ResearchIDH1 mutationMMR mutationsPRECISION trialHypermutator phenotypeMutation/lossClinical Trials ConsortiumHigh neoantigen loadRecurrent GBM tumorsWhole-exome sequencingMMR alterationsNext biomarkersPrior therapySpecific immunotherapyNeoantigen loadRecurrent GBMPhenotype patientsTumor boardMutational loadPatientsProgressive gliomasMGMT statusMLH1 mutationsGBM tumorsTherapeutic opportunitiesTumorsA Comprehensive Assessment of Toxicities in Patients with Central Nervous System Lymphoma Undergoing Autologous Stem Cell Transplantation Using Thiotepa, Busulfan, and Cyclophosphamide Conditioning
Scordo M, Bhatt V, Hsu M, Omuro AM, Matasar MJ, DeAngelis LM, Dahi PB, Moskowitz CH, Giralt SA, Sauter CS. A Comprehensive Assessment of Toxicities in Patients with Central Nervous System Lymphoma Undergoing Autologous Stem Cell Transplantation Using Thiotepa, Busulfan, and Cyclophosphamide Conditioning. Transplantation And Cellular Therapy 2016, 23: 38-43. PMID: 27713090, PMCID: PMC5518313, DOI: 10.1016/j.bbmt.2016.09.024.Peer-Reviewed Original ResearchConceptsAutologous stem cell transplantationPrimary central nervous system lymphomaSecondary central nervous system lymphomaCentral nervous system lymphomaProgression-free survivalNervous system lymphomaTransplantation-related mortalityStem cell transplantationOverall survivalSystem lymphomaCyclophosphamide conditioningNonhematologic toxicityCell transplantationTreatment strategiesTime of ASCTFavorable progression-free survivalHigh-dose therapyBusulfan areaBusulfan dosingAdult patientsPatient characteristicsMedian numberToxicity burdenPatientsConsiderable toxicity