2024
The protective role of GATA6+ pericardial macrophages in pericardial inflammation
Hughes D, Won T, Talor M, Kalinoski H, Jurčová I, Szárszoi O, Stříž I, Čurnová L, Bracamonte-Baran W, Melenovský V, Čiháková D. The protective role of GATA6+ pericardial macrophages in pericardial inflammation. IScience 2024, 27: 110244. PMID: 39040070, PMCID: PMC11260870, DOI: 10.1016/j.isci.2024.110244.Peer-Reviewed Original ResearchMyocardial infarctionMyocardial inflammationPericardial inflammationTrafficking of inflammatory monocytesCoxsackievirus B3-induced myocarditisUpregulation of inflammatory markersPreventing interstitial fibrosisCardiac function post-MIStimulated in vitroFunction post-MIInduced pericarditisInflammatory monocytesInflammatory markersBone marrowInterstitial fibrosisCardiac fibrosisAttenuated traffickingPost-MIInflammationInduced upregulationFibrosisMacrophagesGATA6Pericardial cavityCoxsackievirus B3The Current and Future of Biomarkers of Immune Related Adverse Events
Bracamonte-Baran W, Kim S. The Current and Future of Biomarkers of Immune Related Adverse Events. Rheumatic Disease Clinics Of North America 2024, 50: 201-227. PMID: 38670721, PMCID: PMC11232920, DOI: 10.1016/j.rdc.2024.01.004.Peer-Reviewed Original Research
2021
Endothelial Stromal PD-L1 (Programmed Death Ligand 1) Modulates CD8+ T-Cell Infiltration After Heart Transplantation
Bracamonte-Baran W, Gilotra N, Won T, Rodriguez K, Talor M, Oh B, Griffin J, Wittstein I, Sharma K, Skinner J, Johns R, Russell S, Anders R, Zhu Q, Halushka M, Brandacher G, Čiháková D. Endothelial Stromal PD-L1 (Programmed Death Ligand 1) Modulates CD8+ T-Cell Infiltration After Heart Transplantation. Circulation Heart Failure 2021, 14: e007982. PMID: 34555935, PMCID: PMC8550427, DOI: 10.1161/circheartfailure.120.007982.Peer-Reviewed Original ResearchConceptsPD-L1 expressionT cell infiltrationPD-L1Heart transplantationEndothelial cellsHemodynamic parametersPD1/PD-L1 axisCD8 T-cell ratioMultivariate logistic regression analysisPeripheral blood mononuclear cellsMurine model resultsGraft endothelial cellsHeart transplant patientsPD-L1 axisT cell frequenciesT cell ratioHeart transplantation modelSurveillance endomyocardial biopsiesBlood mononuclear cellsHuman heart transplantationLogistic regression analysisGraft expressionLeukocyte compartmentLeukocyte patternModulates CD8
2020
Complete recovery of fulminant cytotoxic CD8 T‐cell‐mediated myocarditis after ECMELLA unloading and immunosuppression
Jurcova I, Rocek J, Bracamonte‐Baran W, Zelizko M, Netuka I, Maluskova J, Kautzner J, Cihakova D, Melenovsky V, Maly J. Complete recovery of fulminant cytotoxic CD8 T‐cell‐mediated myocarditis after ECMELLA unloading and immunosuppression. ESC Heart Failure 2020, 7: 1976-1981. PMID: 32485066, PMCID: PMC7373888, DOI: 10.1002/ehf2.12697.Peer-Reviewed Original ResearchConceptsMechanical circulatory supportCirculatory supportT cell-mediated myocarditisTemporary mechanical circulatory supportThird-degree atrioventricular blockWeeks of supportSevere biventricular failureT-cell predominanceExtracorporeal membrane oxygenationPrevious cardiac historyBiventricular failureCardiogenic shockVentricular dysfunctionLymphocytic myocarditisCardiac historyEndomyocardial biopsyMembrane oxygenationAtrioventricular blockVentricular unloadingMacrophage expansionMyocarditisFlow cytometryComplete recoverySustained recoveryImmunosuppressionCharacteristics and Outcomes of Pulmonary Angioplasty With or Without Stenting for Sarcoidosis-Associated Pulmonary Hypertension: Systematic Review and Individual Participant Data Meta-Analysis
daSilva-deAbreu A, Bracamonte-Baran W, Condado J, Babaliaros V, Tafur-Soto J, Mandras S. Characteristics and Outcomes of Pulmonary Angioplasty With or Without Stenting for Sarcoidosis-Associated Pulmonary Hypertension: Systematic Review and Individual Participant Data Meta-Analysis. Current Problems In Cardiology 2020, 46: 100616. PMID: 32532452, DOI: 10.1016/j.cpcardiol.2020.100616.Peer-Reviewed Original ResearchConceptsSarcoidosis-associated pulmonary hypertensionIndividual participant dataPulmonary angioplastyPulmonary hypertensionCase reportIndividual Participant Data Meta-AnalysisMulticenter registry studyNYHA FC IIIPulmonary vascular stenosisControlled Clinical TrialsSmall case seriesData Meta-AnalysisRegistry studyCase seriesFC IIIFocal stenosisDefinitive diagnosisClinical trialsPulmonary vesselsOutcome dataVascular stenosisStage IIIPatientsAngioplastySignificant improvementInnate Lymphoid Cells Play a Pathogenic Role in Pericarditis
Choi H, Won T, Hou X, Chen G, Bracamonte-Baran W, Talor M, Jurčová I, Szárszoi O, Čurnova L, Stříž I, Hooper J, Melenovský V, Čiháková D. Innate Lymphoid Cells Play a Pathogenic Role in Pericarditis. Cell Reports 2020, 30: 2989-3003.e6. PMID: 32130902, PMCID: PMC7332109, DOI: 10.1016/j.celrep.2020.02.040.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MovementChemokine CCL11Disease SusceptibilityEosinophilsFemaleFibroblastsGene Expression RegulationHeartHeart Function TestsHumansImmunity, InnateInterleukin-1 Receptor-Like 1 ProteinInterleukin-33Interleukin-5LymphocytesMaleMediastinumMice, Inbred BALB CPericarditisSignal TransductionUp-RegulationConceptsInnate lymphoid cellsEosinophilic pericarditisPathogenic roleMediastinal cavityLymphoid cellsGroup 2 innate lymphoid cellsCardiac fibroblastsDevelopment of pericarditisCardiac inflammationEotaxin-1Healthy controlsPericardial fluidCardiac diseasePericarditisB cellsSerous cavitiesILC2sEosinophilsPatientsMiceHeartCellsCritical roleFibroblastsInflammationTreg-Cell-Derived IL-35-Coated Extracellular Vesicles Promote Infectious Tolerance
Sullivan J, Tomita Y, Jankowska-Gan E, Lema D, Arvedson M, Nair A, Bracamonte-Baran W, Zhou Y, Meyer K, Zhong W, Sawant D, Szymczak-Workman A, Zhang Q, Workman C, Hong S, Vignali D, Burlingham W. Treg-Cell-Derived IL-35-Coated Extracellular Vesicles Promote Infectious Tolerance. Cell Reports 2020, 30: 1039-1051.e5. PMID: 31995748, PMCID: PMC7042971, DOI: 10.1016/j.celrep.2019.12.081.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCoculture TechniquesExtracellular VesiclesFemaleForkhead Transcription FactorsGene Knockout TechniquesHeart TransplantationImmune ToleranceImmunosuppression TherapyInterleukin-12 Subunit p35InterleukinsMiceMice, Inbred C57BLMice, Inbred CBAMice, TransgenicMicroscopy, Electron, TransmissionMinor Histocompatibility AntigensReceptors, CytokineT-Lymphocytes, RegulatoryConceptsIL-35Treg cellsInfectious toleranceExtracellular vesiclesExpression of Ebi3T regulatory (Treg) cellsImmunosuppressive cytokinesInterleukin-35Peripheral toleranceRegulatory cellsEpstein-BarrBystander lymphocytesSecondary suppressionReporter miceB lymphocytesEBI3Protein 3Foxp3LymphocytesGene reporterNovel mechanismP35 proteinCellsEV productionTregs
2019
Decreasing Rates of Acute Kidney Injury After Percutaneous Coronary Interventions Through Education and Standardized Order Sets in a Large Tertiary Teaching Center
daSilva-deAbreu A, Gurung S, Bracamonte-Baran W, Byrnes P, Balan P, Finkel K, Smalling R, Anderson H, Arain S. Decreasing Rates of Acute Kidney Injury After Percutaneous Coronary Interventions Through Education and Standardized Order Sets in a Large Tertiary Teaching Center. Current Problems In Cardiology 2019, 46: 100453. PMID: 31526518, DOI: 10.1016/j.cpcardiol.2019.100453.Peer-Reviewed Original ResearchConceptsAcute kidney injuryPercutaneous coronary interventionAKI ratesKidney injuryCoronary interventionCardiac angiographyPost-PCI acute kidney injuryNational Cardiovascular Data RegistryTertiary teaching centerCare of patientsStandardized order setsStandardized electronic medical recordElectronic medical recordsCommon complicationTertiary centerMedical recordsCare teamData registryHealthcare costsMultilevel interventionsOrder setsTeaching centerPatientsAngiographyInterventionThe Cardiac Microenvironment Instructs Divergent Monocyte Fates and Functions in Myocarditis
Hou X, Chen G, Bracamonte-Baran W, Choi H, Diny N, Sung J, Hughes D, Won T, Wood M, Talor M, Hackam D, Klingel K, Davogustto G, Taegtmeyer H, Coppens I, Barin J, Čiháková D. The Cardiac Microenvironment Instructs Divergent Monocyte Fates and Functions in Myocarditis. Cell Reports 2019, 28: 172-189.e7. PMID: 31269438, PMCID: PMC6813836, DOI: 10.1016/j.celrep.2019.06.007.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, LyCell DifferentiationCell ProliferationC-Mer Tyrosine KinaseDisease Models, AnimalFibroblastsHumansInflammationInterleukin-17MacrophagesMiceMice, Inbred BALB CMice, KnockoutMicroscopy, Electron, TransmissionMonocytesMyocarditisMyocardiumParabiosisSignal TransductionTranscriptomeConceptsExperimental autoimmune myocarditisMonocyte-derived macrophagesIL-17AHeart failureCardiac fibroblastsMurine experimental autoimmune myocarditisIL-17A levelsMacrophage differentiationAutoimmune myocarditisAcute phaseCardiac fibrosisClinical correlationReceptor expressionLy6CMonocyte fateTypes of monocytesMacrophagesMyocarditisMHCIIMonocytesFibroblastsSupDifferentiationFibrosisSequalaeNon-cytotoxic Cardiac Innate Lymphoid Cells Are a Resident and Quiescent Type 2-Commited Population
Bracamonte-Baran W, Chen G, Hou X, Talor M, Choi H, Davogustto G, Taegtmeyer H, Sung J, Hackam D, Nauen D, Čiháková D. Non-cytotoxic Cardiac Innate Lymphoid Cells Are a Resident and Quiescent Type 2-Commited Population. Frontiers In Immunology 2019, 10: 634. PMID: 30984196, PMCID: PMC6450181, DOI: 10.3389/fimmu.2019.00634.Peer-Reviewed Original ResearchConceptsInnate lymphoid cellsIL-33 productionProgenitor-like featuresLymphoid cellsType 2IL-25 receptorNatural killer cellsSubsets of leukocytesAntigen-specific receptorsILC2 expansionInflammatory ILC2sAdoptive transferCardiac inflammationIL-33Killer cellsInflammatory conditionsMouse modelHealthy humansIschemic conditionsCardiac fibroblastsGATA3 expressionILC2Pathologic environmentHealthy heartIschemia
2018
Sca‐1+ cardiac fibroblasts promote development of heart failure
Chen G, Bracamonte‐Baran W, Diny N, Hou X, Talor M, Fu K, Liu Y, Davogustto G, Vasquez H, Taegtmeyer H, Frazier O, Waisman A, Conway S, Wan F, Čiháková D. Sca‐1+ cardiac fibroblasts promote development of heart failure. European Journal Of Immunology 2018, 48: 1522-1538. PMID: 29953616, PMCID: PMC6696927, DOI: 10.1002/eji.201847583.Peer-Reviewed Original ResearchConceptsHeart failureCardiac fibroblastsGM-CSFCardiac inflammationIL-17AFibroblast subsetsSca-1Post-infarct heart failureMyocardial infarction mouse modelExperimental autoimmune myocarditisHeart failure patientsCytokine production profileCardiac biopsy samplesAutoimmune myocarditisIschemic originFailure patientsIschemic cardiomyopathyInflammatory Ly6CImmune cellsMouse modelFl/Biopsy samplesMyocarditisMouse heartsSpecific ablation
2017
Cardiac Autoimmunity: Myocarditis
Bracamonte-Baran W, Čiháková D. Cardiac Autoimmunity: Myocarditis. Advances In Experimental Medicine And Biology 2017, 1003: 187-221. PMID: 28667560, PMCID: PMC5706653, DOI: 10.1007/978-3-319-57613-8_10.Peer-Reviewed Original ResearchConceptsAutoimmune processAdaptive T cell responsesGiant cell myocarditisT cell responsesVariable clinical presentationMonocytes/macrophagesImmunopathogenic featuresAcute complicationsAutoimmune myocarditisSystolic dysfunctionAcute myocarditisCryptic antigensHemodynamic complicationsHeart failureTreg inductionClinical presentationElectrophysiologic disturbancesHumoral responseClinical correlatesDifferent etiologiesInflammatory processImmune responseMyocarditisSpecific cytokinesChronic damageDonor-derived exosomes
Morelli A, Bracamonte-Baran W, Burlingham W. Donor-derived exosomes. Current Opinion In Organ Transplantation 2017, 22: 46-54. PMID: 27898464, PMCID: PMC5407007, DOI: 10.1097/mot.0000000000000372.Peer-Reviewed Original ResearchConceptsDonor MHC moleculesAntigen-presenting cellsSemidirect pathwayLymphoid organsMHC moleculesT cellsPassenger leukocytesDendritic cellsRecipient antigen-presenting cellsDonor antigen-presenting cellsAcute rejection responseDraining lymphoid organsHost dendritic cellsT cell allosensitizationT cell effectorsT helper cellsT cell helpAlloreactive T helper cellsExtracellular vesiclesAcute rejectionAlloantigen exposureDonor exosomesHeart transplantationMaternal microchimerismMaternal antigensModification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance
Bracamonte-Baran W, Florentin J, Zhou Y, Jankowska-Gan E, Haynes W, Zhong W, Brennan T, Dutta P, Claas F, van Rood J, Burlingham W. Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: 1099-1104. PMID: 28096390, PMCID: PMC5293109, DOI: 10.1073/pnas.1618364114.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsB7-2 AntigenB7-H1 AntigenCD4-Positive T-LymphocytesChimerismDendritic CellsExtracellular VesiclesFemaleFetomaternal TransfusionH-2 AntigensHistocompatibility Antigen H-2DHistocompatibility Antigens Class IIImmune ToleranceIsoantigensMaleMaternal-Fetal ExchangeMiceMice, Inbred C57BLMice, TransgenicModels, ImmunologicalPregnancyT-Cell Antigen Receptor SpecificityConceptsHost dendritic cellsCD4 T cellsDendritic cellsPD-L1Maternal microchimerismT cellsMyeloid DCsPlasmacytoid DCsMHC alloantigensTransgenic CD4 T cellsMyeloid dendritic cellsPlasmacytoid dendritic cellsExtracellular vesiclesAdoptive transferAntitumor immunityMaternal antigensTransplant toleranceTumor immunityMurine modelSerum EVsPhysiologic linkMHC complexesMiceSerum fractionsMode of action
2016
Kinetics of Alloantigen-Specific Regulatory CD4 T Cell Development and Tissue Distribution After Donor-Specific Transfusion and Costimulatory Blockade
Tomita Y, Satomi M, Bracamonte-Baran W, Jankowska Gan E, Workman A, Workman C, Vignali D, Burlingham W. Kinetics of Alloantigen-Specific Regulatory CD4 T Cell Development and Tissue Distribution After Donor-Specific Transfusion and Costimulatory Blockade. Transplantation Direct 2016, 2: e73. PMID: 27500263, PMCID: PMC4946513, DOI: 10.1097/txd.0000000000000580.Peer-Reviewed Original ResearchCD4 T cellsDonor-specific transfusionRegulatory T cellsTreg cell subsetsT cellsCell subsetsLymphoid tissueTissue-resident memory T cellsCD4 T cell developmentDouble reporter miceMemory T cellsSecondary lymphoid organsT cell developmentCD40L blockadeRecipient antigensTrans vivoCostimulatory blockadeCytokine IL10Graft outcomeTreg cellsTransplant toleranceAllospecific responsesLymphoid organsDonor organsReporter mice
2015
Non-inherited maternal antigens, pregnancy, and allotolerance
Bracamonte-Baran W, Burlingham W. Non-inherited maternal antigens, pregnancy, and allotolerance. Biomedical Journal 2015, 38: 39-51. PMID: 25355389, DOI: 10.4103/2319-4170.143498.Peer-Reviewed Original ResearchConceptsNon-inherited maternal antigensNIMA effectMaternal antigensImmune systemFetal immune systemSemi-direct pathwayMaternal immune systemNormal human pregnancyBidirectional regulationGrowth factor βNIMA exposureRegulatory lymphocytesIL-35Paternal antigensHuman pregnancyImmunological phenomenaAntigenAllotoleranceFactor βMicrochimerismPregnancyIndirect pathwaysPolymorphic genesDirect pathwayPathway