2020
An endothelial microRNA-1–regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis
Korde A, Ahangari F, Haslip M, Zhang X, Liu Q, Cohn L, Gomez JL, Chupp G, Pober JS, Gonzalez A, Takyar SS. An endothelial microRNA-1–regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis. Journal Of Allergy And Clinical Immunology 2020, 145: 550-562. PMID: 32035607, PMCID: PMC8440091, DOI: 10.1016/j.jaci.2019.10.031.Peer-Reviewed Original ResearchConceptsMiR-1 levelsAllergic airway inflammationChronic rhinosinusitisP-selectin levelsEndothelium-specific overexpressionLung endotheliumAirway eosinophiliaAirway inflammationAsthmatic patientsTissue eosinophiliaMiR-1House dust mite modelEndothelial cellsThymic stromal lymphopoietinNumber of hospitalizationsHuman lung endotheliumIL-13 stimulationCRS cohortQuantitative RT-PCRSputum eosinophiliaAirway obstructionAsthma modelAsthma phenotypesLentiviral vector deliveryMurine model
2017
Lung Endothelial MicroRNA-1 Regulates Tumor Growth and Angiogenesis
Korde A, Jin L, Zhang JG, Ramaswamy A, Hu B, Kolahian S, Guardela BJ, Herazo-Maya J, Siegfried JM, Stabile L, Pisani MA, Herbst RS, Kaminski N, Elias JA, Puchalski JT, Takyar SS. Lung Endothelial MicroRNA-1 Regulates Tumor Growth and Angiogenesis. American Journal Of Respiratory And Critical Care Medicine 2017, 196: 1443-1455. PMID: 28853613, PMCID: PMC5736970, DOI: 10.1164/rccm.201610-2157oc.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerMiR-1 levelsLewis lung carcinoma xenograftsLung carcinoma xenograftsTransgenic miceEndothelial cellsNSCLC tumorsCarcinoma xenograftsLung endotheliumMiR-1Tumor growthTumor progressionVascular endothelial cadherin promoterMicroRNA-1Cohort of patientsTumor-bearing lungsCell lung cancerVascular endothelial growth factorCancer-free tissuesEndothelial growth factorInducible transgenic miceMiR-1 overexpressionKP miceOverall survivalTumor burden
2015
An endothelial TLR4‐VEGFR2 pathway mediates lung protection against oxidant‐induced injury
Takyar S, Zhang Y, Haslip M, Jin L, Shan P, Zhang X, Lee PJ. An endothelial TLR4‐VEGFR2 pathway mediates lung protection against oxidant‐induced injury. The FASEB Journal 2015, 30: 1317-1327. PMID: 26655705, PMCID: PMC4750407, DOI: 10.1096/fj.15-275024.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisEndothelial CellsHydrogen PeroxideHyperoxiaLungLung InjuryMAP Kinase Signaling SystemMiceMice, Inbred C57BLMice, TransgenicOxidantsOxygenProto-Oncogene Proteins c-aktSignal TransductionToll-Like Receptor 4Vascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2ConceptsVEGF receptor 2Primary endothelial cellsLung protectionEndothelial cellsC57/BL6 miceEffect of TLR4VEGF transgenic miceRole of TLR4Bone marrow chimerasLung cell apoptosisTLR4 knockdownTLR4 deficiencyLung injuryTLR4 expressionBL6 miceProtective effectLung compartmentsReceptor 2TLR4Transgenic miceHuman TLR4LDH releaseTransgenic modelingCell apoptosisInjuryProteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2
Pimienta G, Fok V, Haslip M, Nagy M, Takyar S, Steitz JA. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2. PLOS ONE 2015, 10: e0124638. PMID: 26121143, PMCID: PMC4487896, DOI: 10.1371/journal.pone.0124638.Peer-Reviewed Original ResearchConceptsMRNA-seq dataHost cell nucleusBJAB cellsCell proliferationGene expression featuresPro-survival effectsProtein adaptersAlternative splicingMRNA transcriptomeUpregulated proteinsSILAC dataRich elementsAkt activationPI3K-AktBiochemical assaysCell nucleiEBV latencySwitch eventsProteinMaintenance of latencyCell linesVEGFA proteinMechanistic explanationUpregulated oncogenesPIK3AP1
2013
VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus oncogene)–P-selectin axis
Takyar S, Vasavada H, Zhang JG, Ahangari F, Niu N, Liu Q, Lee CG, Cohn L, Elias JA. VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus oncogene)–P-selectin axis. Journal Of Experimental Medicine 2013, 210: 1993-2010. PMID: 24043765, PMCID: PMC3782056, DOI: 10.1084/jem.20121200.Peer-Reviewed Original ResearchConceptsVascular endothelial growth factorTh2 inflammationLung endotheliumMiR-1Th2-mediated lung inflammationIL-13 overexpressionLung-specific overexpressionHouse dust mitePotential therapeutic targetEndothelial growth factorMiR-1 expressionLung inflammationInflammatory disordersDust miteInflammation modelInflammatory responseIntranasal deliveryRole of microRNAsTherapeutic targetInflammationP-selectinGrowth factorVivo knockdownEffector pathwaysEndothelium
2011
Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury
Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury. Annual Review Of Physiology 2011, 73: 479-501. PMID: 21054166, PMCID: PMC3864643, DOI: 10.1146/annurev-physiol-012110-142250.Peer-Reviewed Original ResearchConceptsBRP-39/YKLAdaptive Th2 immunityTissue remodelingChitinase-like proteinsAlternative macrophage activationTh2 inflammationInnate inflammationLung injuryTh2 immunityAcidic mammalian chitinaseAncient gene familyIL-13YKL-40Tissue injuryNumber of chitinasesEffector functionsMacrophage activationFamily of chitinasesInflammationDisease severityInjuryRole of chitinMammalian chitinaseGene familyEndogenous chitinRIG-like Helicase Innate Immunity Inhibits Vascular Endothelial Growth Factor Tissue Responses via a Type I IFN–dependent Mechanism
Ma B, Dela Cruz CS, Hartl D, Kang MJ, Takyar S, Homer RJ, Lee CG, Elias JA. RIG-like Helicase Innate Immunity Inhibits Vascular Endothelial Growth Factor Tissue Responses via a Type I IFN–dependent Mechanism. American Journal Of Respiratory And Critical Care Medicine 2011, 183: 1322-1335. PMID: 21278304, PMCID: PMC3114061, DOI: 10.1164/rccm.201008-1276oc.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDEAD Box Protein 58DEAD-box RNA HelicasesDisease Models, AnimalEdemaFocal Adhesion Protein-Tyrosine KinasesImmunity, InnateInflammationInterferon Type IMiceMice, TransgenicMitogen-Activated Protein KinasesNitric Oxide Synthase Type IIIPhosphatidylinositol 3-KinasePoly I-CPulmonary Disease, Chronic ObstructiveToll-Like Receptor 3Vascular Endothelial Growth Factor AConceptsVascular endothelial growth factorType 2 inflammationChronic obstructive pulmonary disease exacerbationsObstructive pulmonary disease exacerbationsChronic obstructive pulmonary diseaseViral pathogen-associated molecular patternsEndothelial nitric oxide synthaseRIG-like helicasePulmonary disease exacerbationsObstructive pulmonary diseasePathogenesis of asthmaRespiratory syncytial virusNormal pulmonary physiologyNitric oxide synthaseAntiviral innate immunityPathogen-associated molecular patternsReceptor-dependent pathwayTissue responseEndothelial growth factorVEGF receptor 1Ability of VEGFDisease exacerbationPulmonary diseaseRespiratory virusesControl mice
2009
Genes Controlling TGF-β-Induced Pulmonary Phenotypes Defined by Genetic Mapping and mRNA Expression Array Analysis.
Lee C, Takyar S, Tang C, Boyden L, Lifton R, Elias J. Genes Controlling TGF-β-Induced Pulmonary Phenotypes Defined by Genetic Mapping and mRNA Expression Array Analysis. 2009, a5422. DOI: 10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5422.Peer-Reviewed Original Research
2005
mRNA Helicase Activity of the Ribosome
Takyar S, Hickerson RP, Noller HF. mRNA Helicase Activity of the Ribosome. Cell 2005, 120: 49-58. PMID: 15652481, DOI: 10.1016/j.cell.2004.11.042.Peer-Reviewed Original ResearchConceptsHelicase activitySecondary structureHelicase active siteMutation of residuesVitro translation systemMRNA secondary structureDownstream mRNA secondary structureAbility of ribosomesDownstream helicesProtein S3Most mRNAsBase-paired helicesRibosomesTranslation systemHelixActive siteDisplacement assayDownstream tunnelHelicaseCodonProcessivitySubunitsMutationsMRNAResidues
2002
Vitamin B12 Stalls the 80S Ribosomal Complex on the Hepatitis C Internal Ribosome Entry Site
Takyar S, Gowans E, Lott W. Vitamin B12 Stalls the 80S Ribosomal Complex on the Hepatitis C Internal Ribosome Entry Site. Journal Of Molecular Biology 2002, 319: 1-8. PMID: 12051931, DOI: 10.1016/s0022-2836(02)00300-5.Peer-Reviewed Original ResearchConceptsIRES-dependent translationRibosome entry siteHepatitis C virus internal ribosome entry siteInternal ribosome entry siteEntry siteTranslation inhibitor cycloheximideS ribosomal complexCap-dependent mRNAMRNA-specificGradient centrifugation analysisSucrose gradient centrifugation analysisCompetitive binding mechanismHCV IRESRibosomal complexesTranslation inhibitorsInhibitor cycloheximideCentrifugation analysisMRNAComplex formationCycloheximideBinding mechanism
2001
Development of disabled, replication-defective gene transfer vectors from the Jembrana disease virus, a new infectious agent of cattle.
Metharom P, Takyar S, Xia HQ, Ellem KA, Wilcox GE, Wei MQ. Development of disabled, replication-defective gene transfer vectors from the Jembrana disease virus, a new infectious agent of cattle. Veterinary Microbiology 2001, 80: 9-22. PMID: 11278119, DOI: 10.1016/s0378-1135(00)00376-x.Peer-Reviewed Original ResearchVitamin B12 and hepatitis C: Molecular biology and human pathology
Lott W, Takyar S, Tuppen J, Crawford D, Harrison M, Sloots T, Gowans E. Vitamin B12 and hepatitis C: Molecular biology and human pathology. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 4916-4921. PMID: 11296247, PMCID: PMC33138, DOI: 10.1073/pnas.081072798.Peer-Reviewed Original ResearchMeSH KeywordsAntiviral AgentsBase SequenceClassical swine fever virusDose-Response Relationship, DrugEncephalomyocarditis virusHepacivirusHepatitis CHumansLiverMolecular Sequence DataProtein BindingProtein BiosynthesisRegulatory Sequences, Nucleic AcidRibosomesSubstrate SpecificityThermodynamicsViral LoadVirus ReplicationVitamin B 12ConceptsViral loadCobalamin concentrationsHCV viral loadVitamin B12HCV-infected liverDose-dependent mannerReporter gene in vitroEncephalomyocarditis virusGenes in vitroInternal ribosome entry site (IRES)-dependent translationHCVHCV replicationSwine fever virusCap-dependent mechanismSerum cobalamin concentrationsSerumHuman liverHuman serumIRES elementsLiverInhibit translationB12VitaminVirus functions
2000
Specific detection of minus-strand hepatitis C virus RNA by reverse-transcription polymerase chain reaction on PolyA(+)-purified RNA.
Takyar ST, Li Ds, Wang Yh, Trowbridge R, Gowans EJ. Specific detection of minus-strand hepatitis C virus RNA by reverse-transcription polymerase chain reaction on PolyA(+)-purified RNA. Hepatology (Baltimore, Md.) 2000, 32: 382-7. PMID: 10915746, DOI: 10.1053/jhep.2000.9094.Peer-Reviewed Original Research