2025
Recessive genetic contribution to congenital heart disease in 5,424 probands
Dong W, Jin S, Sierant M, Lu Z, Li B, Lu Q, Morton S, Zhang J, López-Giráldez F, Nelson-Williams C, Knight J, Zhao H, Cao J, Mane S, Gruber P, Lek M, Goldmuntz E, Deanfield J, Giardini A, Mital S, Russell M, Gaynor J, Cnota J, Wagner M, Srivastava D, Bernstein D, Porter G, Newburger J, Roberts A, Yandell M, Yost H, Tristani-Firouzi M, Kim R, Seidman J, Chung W, Gelb B, Seidman C, Lifton R, Brueckner M. Recessive genetic contribution to congenital heart disease in 5,424 probands. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2419992122. PMID: 40030011, PMCID: PMC11912448, DOI: 10.1073/pnas.2419992122.Peer-Reviewed Original ResearchConceptsRecessive genotypeCHD probandsCongenital heart diseaseAssociated with laterality defectsGene-based analysisAnalyzed whole-exome sequencingLeft-sided congenital heart diseaseWhole-exome sequencingCongenital heart disease phenotypeAshkenazi Jewish probandsOffspring of consanguineous unionsSingle-cell transcriptomicsCHD geneExome sequencingMouse notochordSecreted proteinsConsanguineous familyFounder variantGenesSignificant enrichmentLaterality phenotypesHeart diseaseProbandsAbnormal contractile functionConsanguineous unionsThe human and non-human primate developmental GTEx projects
Bell T, Blanchard T, Hernandez R, Linn R, Taylor D, VonDran M, Ahooyi T, Beitra D, Bernieh A, Delaney M, Faith M, Fattahi E, Footer D, Gilbert M, Guambaña S, Gulino S, Hanson J, Hattrell E, Heinemann C, Kreeb J, Leino D, Mcdevitt L, Palmieri A, Pfeiffer M, Pryhuber G, Rossi C, Rasool I, Roberts R, Salehi A, Savannah E, Stachowicz K, Stokes D, Suplee L, Van Hoose P, Wilkins B, Williams-Taylor S, Zhang S, Ardlie K, Getz G, Lappalainen T, Montgomery S, Aguet F, Anderson L, Bernstein B, Choudhary A, Domenech L, Gaskell E, Johnson M, Liu Q, Marderstein A, Nedzel J, Okonda J, Padhi E, Rosano M, Russell A, Walker B, Sestan N, Gerstein M, Milosavljevic A, Borsari B, Cho H, Clarke D, Deveau A, Galeev T, Gobeske K, Hameed I, Huttner A, Jensen M, Jiang Y, Li J, Liu J, Liu Y, Ma J, Mane S, Meng R, Nadkarni A, Ni P, Park S, Petrosyan V, Pochareddy S, Salamon I, Xia Y, Yates C, Zhang M, Zhao H, Conrad D, Feng G, Brady F, Boucher M, Carbone L, Castro J, del Rosario R, Held M, Hennebold J, Lacey A, Lewis A, Lima A, Mahyari E, Moore S, Okhovat M, Roberts V, de Castro S, Wessel B, Zaniewski H, Zhang Q, Arguello A, Baroch J, Dayal J, Felsenfeld A, Ilekis J, Jose S, Lockhart N, Miller D, Minear M, Parisi M, Price A, Ramos E, Zou S. The human and non-human primate developmental GTEx projects. Nature 2025, 637: 557-564. PMID: 39815096, PMCID: PMC12013525, DOI: 10.1038/s41586-024-08244-9.Peer-Reviewed Original ResearchConceptsChromatin accessibility dataFunctional genomic studiesWhole-genome sequencingEffects of genetic variationSpatial gene expression profilesNon-human primatesGenotype-Tissue ExpressionGene expression profilesGenomic studiesGene regulationGenetic dataGenetic variationGenomic researchDonor diversityCommunity engagementHuman evolutionEarly developmental defectsGene expressionCell statesDevelopmental programmeHuman diseasesExpression profilesAdult tissuesDevelopmental defectsSingle-cell
2024
SANTO: a coarse-to-fine alignment and stitching method for spatial omics
Li H, Lin Y, He W, Han W, Xu X, Xu C, Gao E, Zhao H, Gao X. SANTO: a coarse-to-fine alignment and stitching method for spatial omics. Nature Communications 2024, 15: 6048. PMID: 39025895, PMCID: PMC11258319, DOI: 10.1038/s41467-024-50308-x.Peer-Reviewed Original ResearchDecoding transcriptomic signatures of cysteine string protein alpha–mediated synapse maintenance
Wang N, Zhu B, Allnutt M, Grijalva R, Zhao H, Chandra S. Decoding transcriptomic signatures of cysteine string protein alpha–mediated synapse maintenance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2320064121. PMID: 38833477, PMCID: PMC11181078, DOI: 10.1073/pnas.2320064121.Peer-Reviewed Original ResearchConceptsSynapse maintenanceTranscriptional changesSynaptogenic adhesion moleculesGene ontology analysisKO miceKO brainMaintenance in vivoCell-cell interactionsGlial cellsSingle-nucleus transcriptomesOntology analysisCspADifferential expressionNeuron-glia interactionsAutophagy-related genesProtein AGenesCell typesNeurodegenerative diseasesInhibitory synapsesLittermate controlsSynaptic pathwaysAdhesion moleculesGlial responseSynapseTlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis
Wang P, Yang X, Zhang L, Sha S, Huang J, Peng J, Gu J, Pearson J, Hu Y, Zhao H, Wong F, Wang Q, Wen L. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nature Communications 2024, 15: 4232. PMID: 38762479, PMCID: PMC11102548, DOI: 10.1038/s41467-024-48611-8.Peer-Reviewed Original ResearchConceptsToll-like receptor 9Gut microbiotaGut microbial communityTransferred to germ-free miceB cellsGerm-free miceTLR9 deficiencyKO miceGene sequencesGerminal center B cellsMicrobial communitiesMarginal zone B cellsGut dysbiosisFollicular helper cellsSelf-DNAMetabolic homeostasisAssociated with increased frequencyPro-inflammatory stateFat tissue inflammationGutHigh-fat dietMicrobiotaHelper cellsT cellsControl miceGlis2 is an early effector of polycystin signaling and a target for therapy in polycystic kidney disease
Zhang C, Rehman M, Tian X, Pei S, Gu J, Bell T, Dong K, Tham M, Cai Y, Wei Z, Behrens F, Jetten A, Zhao H, Lek M, Somlo S. Glis2 is an early effector of polycystin signaling and a target for therapy in polycystic kidney disease. Nature Communications 2024, 15: 3698. PMID: 38693102, PMCID: PMC11063051, DOI: 10.1038/s41467-024-48025-6.Peer-Reviewed Original ResearchConceptsMouse models of autosomal dominant polycystic kidney diseaseModel of autosomal dominant polycystic kidney diseasePolycystin signalingAutosomal dominant polycystic kidney diseasePolycystin-1Polycystic kidney diseaseTreat autosomal dominant polycystic kidney diseaseGlis2Primary ciliaKidney tubule cellsSignaling pathwayMouse modelDominant polycystic kidney diseasePotential therapeutic targetTranslatomeAntisense oligonucleotidesKidney diseasePolycystinMouse kidneyFunctional effectorsCyst formationTherapeutic targetInactivationFunctional targetPharmacological targetsA genotyping array for the globally invasive vector mosquito, Aedes albopictus
Cosme L, Corley M, Johnson T, Severson D, Yan G, Wang X, Beebe N, Maynard A, Bonizzoni M, Khorramnejad A, Martins A, Lima J, Munstermann L, Surendran S, Chen C, Maringer K, Wahid I, Mukherjee S, Xu J, Fontaine M, Estallo E, Stein M, Livdahl T, Scaraffia P, Carter B, Mogi M, Tuno N, Mains J, Medley K, Bowles D, Gill R, Eritja R, González-Obando R, Trang H, Boyer S, Abunyewa A, Hackett K, Wu T, Nguyễn J, Shen J, Zhao H, Crawford J, Armbruster P, Caccone A. A genotyping array for the globally invasive vector mosquito, Aedes albopictus. Parasites & Vectors 2024, 17: 106. PMID: 38439081, PMCID: PMC10910840, DOI: 10.1186/s13071-024-06158-z.Peer-Reviewed Original ResearchConceptsWhole-genome sequencingLow-coverage whole-genome sequencingSNP chipRepetitive elementsGenomic analysisNative rangePatterns of genomic variationWhole-genome sequencing dataSNP chip genotypesPopulation genomic analysesProtein-coding genesLevels of admixtureOrigin of invasionNon-coding regionsPercentage of repetitive elementsGenotyping of samplesChip genotypesGenetic clustersAncestry analysisGenomic variationGenotyping arraysGenotyping platformsMendelian genesGenetic variationGenotyping methods
2023
Profilin1 is required to prevent mitotic catastrophe in murine and human glomerular diseases
Tian X, Pedigo C, Li K, Ma X, Bunda P, Pell J, Lek A, Gu J, Zhang Y, Rangel P, Li W, Schwartze E, Nagata S, Lerner G, Perincheri S, Priyadarshini A, Zhao H, Lek M, Menon M, Fu R, Ishibe S. Profilin1 is required to prevent mitotic catastrophe in murine and human glomerular diseases. Journal Of Clinical Investigation 2023, 133: e171237. PMID: 37847555, PMCID: PMC10721156, DOI: 10.1172/jci171237.Peer-Reviewed Original ResearchConceptsProteinuric kidney diseaseKidney diseasePodocyte lossHuman glomerular diseasesMitotic catastrophePodocyte cell cycleSevere proteinuriaCell cycle reentryKidney failureGlomerular diseaseCell cycleKidney tissueG1/S checkpointUnsuccessful repairCyclin D1Glomerular integrityIrregular nucleiTissue-specific lossMouse podocytesPodocytesAltered expressionDiseaseCyclin B1Ribosome affinity purificationMultinucleated cellsMutation of key signaling regulators of cerebrovascular development in vein of Galen malformations
Zhao S, Mekbib K, van der Ent M, Allington G, Prendergast A, Chau J, Smith H, Shohfi J, Ocken J, Duran D, Furey C, Hao L, Duy P, Reeves B, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu P, Wang Y, Mane S, Piwowarczyk P, Fehnel K, See A, Iskandar B, Aagaard-Kienitz B, Moyer Q, Dennis E, Kiziltug E, Kundishora A, DeSpenza T, Greenberg A, Kidanemariam S, Hale A, Johnston J, Jackson E, Storm P, Lang S, Butler W, Carter B, Chapman P, Stapleton C, Patel A, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay E, Zhao H, Moreno-De-Luca A, Proctor M, Smith E, Orbach D, Alper S, Nicoli S, Boggon T, Lifton R, Gunel M, King P, Jin S, Kahle K. Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations. Nature Communications 2023, 14: 7452. PMID: 37978175, PMCID: PMC10656524, DOI: 10.1038/s41467-023-43062-z.Peer-Reviewed Original ResearchConceptsEphrin receptor B4Galen malformationBrain arteriovenous malformationsP120 RasGAPTransmitted variantsArteriovenous malformationsDe novo variantsSingle-cell transcriptomesSignificant burdenCerebrovascular developmentIntegrative genomic analysisEndothelial cellsVenous networkAdditional probandsMalformationsNovo variantsMissense variantsGenomic analysisDevelopmental angiogenesisVascular developmentDamaging variantsVeinRasGAPIntegrated analysisPatientsGenomic evidence of sex chromosome aneuploidy and infection-associated genotypes in the tsetse fly Glossina fuscipes, the major vector of African trypanosomiasis in Uganda
Saarman N, Son J, Zhao H, Cosme L, Kong Y, Li M, Wang S, Weiss B, Echodu R, Opiro R, Aksoy S, Caccone A. Genomic evidence of sex chromosome aneuploidy and infection-associated genotypes in the tsetse fly Glossina fuscipes, the major vector of African trypanosomiasis in Uganda. Infection Genetics And Evolution 2023, 114: 105501. PMID: 37709241, PMCID: PMC10593118, DOI: 10.1016/j.meegid.2023.105501.Peer-Reviewed Original ResearchConceptsGenome-wide association analysisNovel vector control strategiesAnimal African trypanosomiasisSex chromosome aneuploidyNatural populationsGenome assemblySex chromosomesGenomic regionsGenomic evidenceGenetic variationBp upstreamAutosomal SNPsSeq dataTrypanosome infectionTrypanosome parasitesAssociation analysisMolecular pathwaysAssembly metricsLinkage disequilibriumLecithin-cholesterol acyltransferaseAfrican trypanosomiasisMajor vectorGenomeSNPsPrimary vectorOTTERS: a powerful TWAS framework leveraging summary-level reference data
Dai Q, Zhou G, Zhao H, Võsa U, Franke L, Battle A, Teumer A, Lehtimäki T, Raitakari O, Esko T, Epstein M, Yang J. OTTERS: a powerful TWAS framework leveraging summary-level reference data. Nature Communications 2023, 14: 1271. PMID: 36882394, PMCID: PMC9992663, DOI: 10.1038/s41467-023-36862-w.Peer-Reviewed Original ResearchLive imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo
May D, Yun S, Gonzalez D, Park S, Chen Y, Lathrop E, Cai B, Xin T, Zhao H, Wang S, Gonzalez L, Cockburn K, Greco V. Live imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo. ELife 2023, 12: e83444. PMID: 36880644, PMCID: PMC10027315, DOI: 10.7554/elife.83444.Peer-Reviewed Original ResearchConceptsStem cell differentiationCell differentiationStem cell compartmentCompaction changesChromatin compaction statesDynamic transcriptional statesCell compartmentChromatin architectureCell cycle statusChromatin rearrangementNascent RNATranscriptional burstingTranscriptional statesLive imagingTissue contextGene expressionDifferentiating cellsGlobal remodelingIndividual cellsCycle statusStem cellsDifferentiation statusDifferentiationCellsMorphological changesNLRP6 deficiency expands a novel CD103+ B cell population that confers immune tolerance in NOD mice
Pearson J, Peng J, Huang J, Yu X, Tai N, Hu Y, Sha S, Flavell R, Zhao H, Wong F, Wen L. NLRP6 deficiency expands a novel CD103+ B cell population that confers immune tolerance in NOD mice. Frontiers In Immunology 2023, 14: 1147925. PMID: 36911699, PMCID: PMC9995752, DOI: 10.3389/fimmu.2023.1147925.Peer-Reviewed Original ResearchConceptsNlrp6-deficient miceType 1 diabetesNLRP6 deficiencyB cellsIL-10Non-obese diabetic (NOD) miceType 1 diabetes developmentRole of NLRP6Germ-free miceT cell proliferationB cell populationsIntestinal epithelial cellsBreg populationAutoimmune diabetesNOD miceCrohn's diseaseImmune toleranceDiabetes developmentDiabetic miceImmune cellsCD103Inflammasome proteinsImmune responseNLRP6Gut microbiota
2022
Cell Cycle and Senescence Regulation by Podocyte Histone Deacetylase 1 and 2
Rangel P, Cross E, Liu C, Pedigo C, Tian X, Gutiérrez-Calabrés E, Nagata S, Priyadarshini A, Lerner G, Bunda P, Perincheri S, Gu J, Zhao H, Wang Y, Inoue K, Ishibe S. Cell Cycle and Senescence Regulation by Podocyte Histone Deacetylase 1 and 2. Journal Of The American Society Of Nephrology 2022, 34: 433-450. PMID: 36414418, PMCID: PMC10103311, DOI: 10.1681/asn.2022050598.Peer-Reviewed Original ResearchConceptsCell cycle entryDNA damageSenescence-associated β-galactosidase activityDouble knockout miceRole of HDACsNormal glomerular filtration barrierAssociated phenotypesP21-mediated cell cycle arrestOpen chromatin conformationGlomerular filtration barrierSevere proteinuriaKidney failureProinflammatory cytokinesCell cycle regulationHistone deacetylase 1Cell cycle arrestKi67 expressionSustained DNA damagePodocyte lossIntact expressionMice leadsPodocyte-specific lossMatrix metalloproteinasesPodocyte detachmentProteinuriaNetwork assisted analysis of de novo variants using protein-protein interaction information identified 46 candidate genes for congenital heart disease
Xie Y, Jiang W, Dong W, Li H, Jin SC, Brueckner M, Zhao H. Network assisted analysis of de novo variants using protein-protein interaction information identified 46 candidate genes for congenital heart disease. PLOS Genetics 2022, 18: e1010252. PMID: 35671298, PMCID: PMC9205499, DOI: 10.1371/journal.pgen.1010252.Peer-Reviewed Original Research
2018
Spatiotemporal transcriptomic divergence across human and macaque brain development
Zhu Y, Sousa AMM, Gao T, Skarica M, Li M, Santpere G, Esteller-Cucala P, Juan D, Ferrández-Peral L, Gulden FO, Yang M, Miller DJ, Marques-Bonet T, Imamura Kawasawa Y, Zhao H, Sestan N. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 2018, 362 PMID: 30545855, PMCID: PMC6900982, DOI: 10.1126/science.aat8077.Peer-Reviewed Original ResearchConceptsBrain developmentHuman nervous system developmentHuman brain developmentNervous system developmentPostnatal patternSingle-cell transcriptomic dataSpatiotemporal transcriptional regulationBrain regionsNeuropsychiatric disordersLate fetalPrefrontal cortexTranscriptomic programsHuman dataTranscriptomic divergenceTranscriptional regulationTranscriptomic differencesAutism spectrum disorderTranscriptomic dataDisordersTranscriptomic patternsSpectrum disorderIntegrative analysisPathogenesisTranslational studies support a role for serotonin 2B receptor (HTR2B) gene in aggression-related cannabis response
Montalvo-Ortiz JL, Zhou H, D’Andrea I, Maroteaux L, Lori A, Smith A, Ressler KJ, Nuñez YZ, Farrer LA, Zhao H, Kranzler HR, Gelernter J. Translational studies support a role for serotonin 2B receptor (HTR2B) gene in aggression-related cannabis response. Molecular Psychiatry 2018, 23: 2277-2286. PMID: 29875475, PMCID: PMC6281782, DOI: 10.1038/s41380-018-0077-6.Peer-Reviewed Original ResearchConceptsGrady Trauma ProjectAfrican AmericansWild-type miceReceptor geneEffects of cannabisWide significant risk lociResident-intruder paradigmImpulsivity/aggressionConcordant findingsTHC administrationKnockout miceTranslational studiesAA subjectsCannabis useStudy designTrauma ProjectAdverse effectsMiceCannabisAggressive behaviorEuropean AmericansNominal associationAdverse consequencesGenome-wide association study (GWAS) designRisk loci
2000
Assessing reliability of gene clusters from gene expression data
Zhang K, Zhao H. Assessing reliability of gene clusters from gene expression data. Functional & Integrative Genomics 2000, 1: 156-173. PMID: 11793234, DOI: 10.1007/s101420000019.Peer-Reviewed Original ResearchConceptsStatistical resampling methodsHierarchical clustering methodCluster identification methodNumerical algorithmGene expression dataClustering methodClustering treesResampling methodHierarchical clustering algorithmExpression dataExperiment designClustering algorithmAlgorithmChallenging problemData setsMeasured gene expression levelsEffect of variationData analysisClustersUncertaintyProblemReliability
1998
Statistical Analysis of Half-Tetrads
Zhao H, Speed T. Statistical Analysis of Half-Tetrads. Genetics 1998, 150: 473-485. PMID: 9725862, PMCID: PMC1460320, DOI: 10.1093/genetics/150.1.473.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply