Ferdi Kiral
Postdoctoral AssociateAbout
Research
Publications
2024
Telencephalic organoids as model systems to study cortical development and diseases
Yang W, Kiral F, Park I. Telencephalic organoids as model systems to study cortical development and diseases. Organoid 2024, 4: e1. DOI: 10.51335/organoid.2024.4.e1.Peer-Reviewed Original Research
2023
Diencephalic organoids – A key to unraveling development, connectivity, and pathology of the human diencephalon
Kiral F, Choe M, Park I. Diencephalic organoids – A key to unraveling development, connectivity, and pathology of the human diencephalon. Frontiers In Cellular Neuroscience 2023, 17: 1308479. PMID: 38130869, PMCID: PMC10733522, DOI: 10.3389/fncel.2023.1308479.Peer-Reviewed Original ResearchHuman diencephalonBrain organoidsNeurodevelopmental disordersDevelopmental brain disordersHuman brain tissueThalamocortical connectionsBrain disordersDiencephalic developmentBrain tissueDiencephalic structuresOrganoid modelsHuman-specific aspectsSensory processingDiencephalonDisordersTelencephalic fatePathologyStem cellsStem cell technologyOrganoidsGeneration of ventralized human thalamic organoids with thalamic reticular nucleus
Kiral F, Cakir B, Tanaka Y, Kim J, Yang W, Wehbe F, Kang Y, Zhong M, Sancer G, Lee S, Xiang Y, Park I. Generation of ventralized human thalamic organoids with thalamic reticular nucleus. Cell Stem Cell 2023, 30: 677-688.e5. PMID: 37019105, PMCID: PMC10329908, DOI: 10.1016/j.stem.2023.03.007.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsSingle-cell RNA sequencingReceptor tyrosine protein kinaseTyrosine protein kinaseEmbryonic stem cellsDisease-associated genesLineage developmentRNA sequencingHuman brain developmentOrganoid systemsStem cellsHuman brain organoidsNeuronal functionBrain organoidsOrganoidsBrain organoid systemsDistinct nucleiBrain developmentThalamic developmentPTCHD1NucleusKinaseGenesSequencing
2022
Advanced in vitro models: Microglia in action
Cakir B, Kiral F, Park I. Advanced in vitro models: Microglia in action. Neuron 2022, 110: 3444-3457. PMID: 36327894, DOI: 10.1016/j.neuron.2022.10.004.Peer-Reviewed Original Research
2021
Brain connectivity inversely scales with developmental temperature in Drosophila
Kiral F, Dutta S, Linneweber G, Hilgert S, Poppa C, Duch C, von Kleist M, Hassan B, Hiesinger P. Brain connectivity inversely scales with developmental temperature in Drosophila. Cell Reports 2021, 37: 110145. PMID: 34936868, DOI: 10.1016/j.celrep.2021.110145.Peer-Reviewed Original ResearchSystematic functional analysis of Rab GTPases reveals limits of neuronal robustness to environmental challenges in flies
Kohrs F, Daumann I, Pavlovic B, Jin E, Kiral F, Lin S, Port F, Wolfenberg H, Mathejczyk T, Linneweber G, Chan C, Boutros M, Hiesinger P. Systematic functional analysis of Rab GTPases reveals limits of neuronal robustness to environmental challenges in flies. ELife 2021, 10: e59594. PMID: 33666175, PMCID: PMC8016483, DOI: 10.7554/elife.59594.Peer-Reviewed Original ResearchConceptsRab GTPasesMembrane traffickingSystematic functional analysisObvious morphological defectsAutophagy-independent roleMutant collectionNull mutantsFertile fliesMaintenance defectsGTPasesNeuronal robustnessFunctional analysisMolecular switchMorphological defectsUnknown functionHalf exhibitMutantsFliesNeuronal functionGenesTraffickingEnvironmental challengesRabRab26Nervous system
2020
Generation and characterization of inner photoreceptor‐specific enhancer‐trap lines using a novel piggyBac‐Gal4 element in Drosophila
Kara E, Kiral F, Çolak A, Çelik A. Generation and characterization of inner photoreceptor‐specific enhancer‐trap lines using a novel piggyBac‐Gal4 element in Drosophila. Archives Of Insect Biochemistry And Physiology 2020, 104: e21675. PMID: 32285519, DOI: 10.1002/arch.21675.Peer-Reviewed Original ResearchAutophagy-dependent filopodial kinetics restrict synaptic partner choice during Drosophila brain wiring
Kiral F, Linneweber G, Mathejczyk T, Georgiev S, Wernet M, Hassan B, von Kleist M, Hiesinger P. Autophagy-dependent filopodial kinetics restrict synaptic partner choice during Drosophila brain wiring. Nature Communications 2020, 11: 1325. PMID: 32165611, PMCID: PMC7067798, DOI: 10.1038/s41467-020-14781-4.Peer-Reviewed Original Research
2019
Serial Synapse Formation through Filopodial Competition for Synaptic Seeding Factors
Özel M, Kulkarni A, Hasan A, Brummer J, Moldenhauer M, Daumann I, Wolfenberg H, Dercksen V, Kiral F, Weiser M, Prohaska S, von Kleist M, Hiesinger P. Serial Synapse Formation through Filopodial Competition for Synaptic Seeding Factors. Developmental Cell 2019, 50: 447-461.e8. PMID: 31353313, PMCID: PMC6702111, DOI: 10.1016/j.devcel.2019.06.014.Peer-Reviewed Original Research
2018
Rab GTPases and Membrane Trafficking in Neurodegeneration
Kiral F, Kohrs F, Jin E, Hiesinger P. Rab GTPases and Membrane Trafficking in Neurodegeneration. Current Biology 2018, 28: r471-r486. PMID: 29689231, PMCID: PMC5965285, DOI: 10.1016/j.cub.2018.02.010.Peer-Reviewed Original ResearchConceptsMembrane traffickingRab GTPasesCellular responsesRab GTPase functionGTPase functionMembrane compartmentsGTPasesKey regulatorSecondary consequenceHallmark of neurodegenerationTraffickingSecondary correlateDrivers of pathologyCurrent knowledgeNeurodegenerationHuntington's diseaseMembraneDifferent rolesRegulatorAlzheimer's diseaseCompartmentsDefectsHallmarkDirect consequenceFunction