Sidi Chen, PhD
Research & Publications
Biography
News
Locations
Research Summary
My group's current research focuses on cancer immunology, genetics and systems biology. We develop and utilize a wide variety of modern biology and engineering tools, including in vivo gene editing and tumor modeling, genome-wide and focused CRISPR screens, immune engineering, high-density and high-dimensional genetic manipulations and systems level profiling to study the genetic, epigenetic, cellular and immunological bases of cancer oncogenesis, metastasis, immunity and treatment.
Extensive Research Description
0. Development of MAEGI and other novel viral based immune-gene therapy:
The major challenge in cancer prevention and treatment is to devise a therapy that potently and specifically targets tumor cells without harming normal cells. Major types of immunotherapy include checkpoint blockade, adoptive cell transfer, human recombinant cytokines, and cancer vaccines. While checkpoint blockade immunotherapies and adoptive cell therapies such as CAR-Ts have yielded significant clinical benefits across a broad spectrum of cancer types, however, only a fraction of patients show sustained clinical responses, with many patients suffering from major or even life-threatening toxicities. These challenges urge for new types of immunotherapies that are more potent and potentially less toxic. Very recently, we have developed CRISPRa-mediated Multiplexed Activation of Endogenous Genes as an Immunotherapy (MAEGI) (Wang*, Chow* et al. 2019 Nature Immunology). While neoantigen-targeting approaches have demonstrated the concept of leveraging personalized neoantigens as cancer treatments, and are based on delivery of synthetic mutant peptides or transcripts. However, the efficacy and scalability of these approaches is limited. The CRISPR activation (CRISPRa) system uses a catalytically inactive Cas9 (dCas9), enabling simple and flexible gene expression regulation through dCas9-transcriptional activators paired with single guide RNAs (sgRNAs). This enables precise targeting of large gene pools of endogenous genes in a flexible manner. We demonstrate that MAEGI has therapeutic efficacy across three tumor types. Mechanistically, our preliminary work showed that MAEGI treatment elicits anti-tumor immune responses by recruiting effector T cells and remodeling the tumor microenvironment. We will perform advanced development, characterization and optimization of MAEGI, as a novel immune-gene therapy approach to elicit a potent and specific immune response to tumors based on their unique genetic composition.
Wang G*, Chow RD*, Bai Z, Zhu L, Errami Y, Dai X, Dong MB, Ye L, Zhang X, Renauer RA, Park JJ, Shen L, Ye H, Fuchs CS, and Chen S†. Multiplexed activation of endogenous genes by CRISPRa elicits potent anti-tumor immunity.
Nature Immunology (2019)
https://www.nature.com/articles/s41590-019-0500-4#Abs1
1. Systems-level cancer immunology and immunotherapy
Immunotherapy, which harnesses the body’s own immune system to combat the disease, has been strikingly effective in inducing durable responses across multiple cancer types. However, only a subset of the patients responds to immunotherapy such as checkpoint blockade or adoptive T cell transfer. Our lab is interested in utilizing a combinatorial approach including gene editing and animal models to better understand tumor immunity for improved immunotherapy.
CD8 T cells play essential roles in anti-tumor immune responses. We recently performed genome-scale CRISPR screens in CD8 T cells directly under cancer immunotherapy settings and identified regulators of tumor infiltration and degranulation (Dong et al. 2019 Cell). The in vivo screen robustly re-identified canonical immunotherapy targets such as PD-1 and Tim-3, along with genes that have not been characterized in T cells. We discovered an RNA helicase Dhx37 as a key regulator of CD8 T cell function and anti-tumor immunity, thereby servicing as a new immunotherapy target. The high-throughput genetic screens open new venues for immunotherapy target discovery in primary T cells in vivo.
Systematic Immunotherapy Target Discovery Using Genome-Scale In vivo CRISPR Screens in CD8 T Cells
Dong MB*, Wang G*, Chow RD*, Ye L*, Zhu L, Dai X, Park JJ, Kim HR, Errami Y, Guzman CD, Zhou X, Chen KY, Renauer PA, Du Y, Shen J, Lam SZ, Zhou JJ, Lannin DR, Herbst RS, Chen S. Systematic Immunotherapy Target Discovery Using Genome-Scale In vivo CRISPR Screens in CD8 T Cells. Cell 2019. doi: 10.1016/j.cell.2019.07.044.
https://www.ncbi.nlm.nih.gov/pubmed/31442407
AAV-based in vivo T cell gene editing and high-throughput CRISPR screening of immunotherapy in GBM models
Ye L*, Park JJ*, Dong MB*, Yang Q, Chow RD, Peng L, Guo J, Dai X, Wang G, Errami Y, andChen S†. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nature Biotechnology (2019)
https://www.nature.com/articles/s41587-019-0246-4
Evading immune destruction is a key for resistance to immunotherapy, we leveraged in vivo screening approaches to identify and interrogate of tumor-intrinsic immune modulators in vivo (Codina et al. 2019Cell Systems). Our genome-scale in vivo CRISPR screens robustly identified multiple tumor-intrinsic factors that alter the ability of cells to grow as tumors across different levels of immunocompetence. Functional interrogation of top hits showed that Prkar1a loss greatly altered the transcriptome and proteome involved in inflammatory and immune responses and tumor-intrinsic mutations in Prkar1aled to drastic alterations in the genetic program of cancer cells, thereby remodeling the tumor microenvironment.
Codina A*,Renauer P*, Wang G*, Chow RD*, Park JJ, Ye H, Zhang K, Dong M, Gassaway B, Ye L, Errami Y, Shen L, Chang A, Jain D, Herbst RS, Bosenberg M, Rinehart J, Fan R and Chen S†. Convergent identification and interrogation of tumor-intrinsic factors that modulate cancer immunity in vivo.Cell Systems 2019 Feb 27;8(2):136-151.e7. doi: 10.1016/j.cels.2019.01.004. PMID: 30797773. Highlighted in Yale News.
https://www.ncbi.nlm.nih.gov/pubmed/30797773
2. Immune engineering and chimeric antigen receptor T cells (CAR-T)
Chimeric antigen receptor T cell is a transformative class of cell therapy, which has recently been FDA-approved for hematopoietic malignancies. However, current CAR-T therapy faces many hurdles especially in solid tumors, where the T cell-mediated cytotoxicity against cancer can be abolished by multiple cancer-immune mechanisms, such as reduced or lost antigen presentation, generation of an immune-suppressive tumor environment, heightened expression of immune checkpoint proteins, lack of T cell persistence, and T cell exhaustion. Engineering more sophisticated CAR-T cells with precision control and other desired features requires a highly efficient platform. Harnessing the Cas12a/Cpf1 systems with AAV, we have recently built a novel system that enables stable CAR-T with HDR knockin and immune checkpoint knockout (KIKO CAR-T) generation at high efficiency in one step (Dai et al. 2019 Nature Methods). The modularity of AAV-Cpf1 KIKO enables flexible and efficient generation of multiple different CARs in the same T cell, opening new capabilities of therapeutic cellular engineering with simplicity and precision.
Dai X*, Park JJ*, Du Y, Kim RK, Wang G, Errami Y and Chen S†. One-step generation of modular CAR-T with AAV-Cpf1. Nature Methods (2019) Mar;16(3):247-254. doi: 10.1038/s41592-019-0329-7. PMID: 30804551. Highlighted in Yale News, BioArt, Yale College News, MedicalXpress, Naked Science, Mendeley, ScienceBlog.com, Scitech Daily, etc.
https://www.ncbi.nlm.nih.gov/pubmed/30804551
3. Precision cancer modeling and mediated in vivo CRISPR screen to map functional cancer drivers
We previously developed a CRISPR-based genetically engineered mouse model (CGEMM) of several cancer types. By co-targeting combinations of key tumor suppressor genes and oncogenes, we developed methods to induce liver cancer (Xue*, Chen*, Yin* et al. 2014 Nature) and lung adenocarcinoma (Platt*, Chen* et al. 2014 Cell). Cancer genomics initiatives have charted the genomic landscapes of human cancers. While some mutations were found in classical oncogenes and tumor suppressors, many others have not been previously implicated in cancer. My group developed direct high-throughput in vivo mapping of functional variants in an autochthonous mouse model of cancer and direct identification of novel functional drivers in vivo (Chow et al. 2017 Nature Neuroscience; Wang et al. 2018 Science Advances). The most devastating hallmark of the cancer cells is that they evolve to become invasive and metastatic. Understanding how cancer cells become metastatic, how they disseminate through circulation, and how the circulating tumor cells seed new micro-tumors is a key to treat the disease. Our approach is to perform systematic genetic screens in mouse models to identify metastasis regulators (Chen*, Sanjana* et al. 2015 Cell). We summarize the tools and problems of cancer CRISPR screens in vivo (Chow and Chen, 2018, Trends In Cancer).
Chow RD*, Guzman CD*, Wang G*, Schmidt F*, Youngblood MW, Ye L, Errami Y, Dong MB, Martinez MA, Zhang S, Renauer P, Bilguvar K, Gunel M, Sharp PA, Zhang F, Platt RJ @, Chen S @.AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature Neuroscience, 20, 1329–1341 (2017) doi:10.1038/nn.4620) Aug 14. PMID: 28805815
https://www.ncbi.nlm.nih.gov/pubmed/28805815
Wang G*, Chow RD*, Ye L, Guzman CD, Dai X, Dong MB, Zhang F, Sharp PA, Platt RJ@, and Chen S@.Mapping a Functional Cancer Genome Atlas of Tumor Suppressors in Mouse Liver Using AAV-CRISPR Mediated Direct in vivo Screening. (2018) Science Advances. Feb 28;4(2):eaao5508. doi: 10.1126/sciadv.aao5508. PMID: 29503867
https://www.ncbi.nlm.nih.gov/pubmed/29503867
Chow RD and Chen S@. Cancer CRISPR screens in vivo. Trends In Cancer. 2018 May;4(5):349-358. doi: 10.1016/j.trecan.2018.03.002.. Review. PMID: 29709259 (Cover story)
https://www.ncbi.nlm.nih.gov/pubmed/29709259
Chow RD and Chen S@. Sno-derived RNAs are prevalent molecular markers of cancer immunity. Oncogene, 2018DOI - 10.1038/s41388-018-0420-z
https://www.ncbi.nlm.nih.gov/pubmed/30072739
Chen S*,Sanjana NE*, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015 Mar 12;160(6):1246-60. doi: 10.1016/j.cell.2015.02.038. PMID: 25748654; (* = co-first authors) (Selected as Best of Cell2015)
https://www.ncbi.nlm.nih.gov/pubmed/25748654
Xue W*, Chen S*, Yin H*, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014 Oct 16;514(7522):380-4. doi: 10.1038/nature13589. PMID: 25119044
https://www.ncbi.nlm.nih.gov/pubmed/25119044
Platt RJ*, Chen S*,Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014 Oct 9;159(2):440-55. doi: 10.1016/j.cell.2014.09.014. PMID: 25263330; (Cover story)
https://www.ncbi.nlm.nih.gov/pubmed/25263330
4. Development of novel tools and biotechnologies
The lab also exerts strong interests in development of novel technologies to enable new paths of discoveries, such as new ways to manipulate the genome, the transcriptome, the proteome, as well as control of cellular behaviors in vivo. Examples below demonstrated creative works by lab members. Lab members are welcomed as new innovators and develop their own creative ideas in the lab.
Chow RD, Wang G, Ye L, Codina A, Kim HR, Shen L, Dong MB, Errami Y, Chen S.
In vivo profiling of metastatic double knockouts through CRISPR-Cpf1 screens.
Nature Methods. 2019 May;16(5):405-408. doi: 10.1038/s41592-019-0371-5. Epub 2019 Apr 8.
PMID: 30962622
https://www.ncbi.nlm.nih.gov/pubmed/30962622
Ye L, Wang C, Hong L, Sun N, Chen D, Chen S, Han F. Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discov. 2018 Jul 24;4:46. doi: 10.1038/s41421-018-0049-7. eCollection 2018. PubMed PMID: 30062046
https://www.ncbi.nlm.nih.gov/pubmed/30062046
Chow RD, Kim HR, Chen S. Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion. Nat Commun. 2018 May 15;9(1):1903. doi: 10.1038/s41467-018-04158-z. PubMed PMID: 29765043
http://www.nature.com/articles/s41467-018-04158-z.pdf
Pyzocha NK, Chen S. Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chem Biol. 2018 Feb 16;13(2):347-356. doi: 10.1021/acschembio.7b00800. Epub 2017 Dec 5. PubMed PMID: 29121460.
https://www.ncbi.nlm.nih.gov/pubmed/29121460
5. Other on-going directions in cancer immunology, immune engineering and immunotherapy:
Tumor-intrinsic factors that modulate checkpoint blockade efficacy
Genetic regulation of T cell function
Immune components and regulation in the microenvironment of brain tumors, such as GBM
Innate immune cells in oncology, such as macrophage and dendritic cells
Engineering of immune cells and the immunological machinery
Development of new classes of immunotherapies
6. Viral genetics, immunology and COVID-19 research
Recently, the COVID-19 pandemic occurred. My lab is conducting COVID-19 research in the following areas: Development of novel therapeutic candidates such as neutralizing antibodies; Genomic analysis of expression and immune signatures to identify genetic links to disease vulnerability factors such as age; Understanding of viral immunology for the development of better coronavirus vaccines.
Chow RD and Chen S. The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2. bioRxiv (preprint) 2020. doi: 10.1101/2020.04.07.030684.
https://www.biorxiv.org/content/10.1101/2020.04.07.030684v1
Yuan S*, Peng L*, Park JJ, Hu Y, Devarkar SC, Dong MB, Wu S, Chen S†, Lomakin I† and Xiong Y†. Nonstructural protein 1 of SARS-CoV-2 is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA. BioRxov 2020. doi: doi.org/10.1101/2020.08.09.243451 Molecular Cell. DOI: https://doi.org/10.1016/j.molcel.2020.10.034
Positions available
Positions available (Standard):
We are open to highly motivated scientists at all levels to work on exciting on-going directions, especially cancer immunology and technology development. These multi-year projects are supported by various sources of funding.
New Positions Available (11/16/2019)
Associate Research Scientists (ARS):
Preferred experience or skills:
1. Experience in managing multiple project development in the field of immunooncology
2. Antibody therapeutic development
3. Protein biochemistry
Computational Biologists:
Preferred experience or skills:
1. Coding skills in R, Python, Perl or C/C++
2. Hands on experience in bioinformatics, large scale data processing, and data visualization
3. Solid background in statistics
Laboratory Technicians:
Preferred experience or skills:
1. Molecular biology and Cell biology
2. Animal work, including basic handling, procedures and care
3. Biochemistry
Cell Therapy Scientists and/or Physician Scientists:
Preferred experience or skills:
1. Adoptive cell therapy, CAR-T, TCR-T, or alike
2. Process development, vector development, GLP/GMP
3. Experience in cell therapy clinic is preferred
Viral Therapy Scientists:
Preferred experience or skills:
1. Viral therapy development
2. Virus prep, including but not limited to AAV, lentivirus, Adenovirus, HSV, Oncolytic virus
3. New vector development and optimization
Postdocs:Postdoc candidates may directly apply by email (sidichenlab@gmail.com).
Preferred experience or skills:
1. Computational biology, statistics, big data, machine learning, bioinformatics
2. Antibody engineering, campaign, production, characterization and development
3. Mass spec, metabolomics, proteomics, protein characterization and engineering
4. In vivo immunology and immunotherapy models
5. Genome engineering, bioengineering, technology development
Requirements:
- PhD, MD, or MD-PhD in immunology, cancer biology, biochemistry, genetics, bioengineering, or equivalent.
- CV, with key publications
- 3 letters of references, or contacts of 3 referees, including one from doctoral mentor
- Description of future research interests and brief plan (~1pp)
Students:Interested students may contactDr. Chen via Yale email.
The lab is currently open to students from MD-PhD, BBS/Genetics, BBS/Immunobiology tracks. Other students or fellows may contact for discussion on a case-by-case scenario.
Postgraduates:Postgrad candidates may apply by email (sidichenlab@gmail.com).
Requirements: Bachelor degree in biology, bioengineering, biomedical science, chemistry, or similar.
For details please refer to Chen lab website. Yale University is an equal opportunity employer.
Coauthors
Research Interests
Biomedical Engineering; Cell Transformation, Neoplastic; Genetics; Immunity; Immunotherapy; Lymphocytes; Neoplasm Metastasis; Stem Cells; Therapeutics; Immunotherapy, Adoptive; Genomics; Systems Biology; Metabolomics; Bioengineering; Synthetic Biology; CRISPR-Cas Systems
Public Health Interests
Cancer; Genetics, Genomics, Epigenetics; Immunology
Selected Publications
- Applications of CRISPR technology in cellular immunotherapyZhou X, Renauer P, Zhou L, Fang S, Chen S. Applications of CRISPR technology in cellular immunotherapy. Immunological Reviews 2023 PMID: 37449673, DOI: 10.1111/imr.13241.
- AAV-mediated delivery of a Sleeping Beauty transposon and an mRNA-encoded transposase for the engineering of therapeutic immune cellsYe L, Lam S, Yang L, Suzuki K, Zou Y, Lin Q, Zhang Y, Clark P, Peng L, Chen S. AAV-mediated delivery of a Sleeping Beauty transposon and an mRNA-encoded transposase for the engineering of therapeutic immune cells. Nature Biomedical Engineering 2023, 1-17. PMID: 37430157, DOI: 10.1038/s41551-023-01058-6.
- Pooled screening with next-generation gene editing toolsZhou L, Yang L, Feng Y, Chen S. Pooled screening with next-generation gene editing tools. Current Opinion In Biomedical Engineering 2023, 100479. DOI: 10.1016/j.cobme.2023.100479.
- Immunogenetic metabolomics reveals key enzymes that modulate CAR T-cell metabolism and function.Renauer P, Park J, Bai M, Acosta A, Lee W, Lin G, Zhang Y, Dai X, Wang G, Errami Y, Wu T, Clark P, Ye L, Yang Q, Chen S. Immunogenetic metabolomics reveals key enzymes that modulate CAR T-cell metabolism and function. Cancer Immunology Research 2023 PMID: 37253111, DOI: 10.1158/2326-6066.cir-22-0565.
- Polyvalent mRNA vaccination elicited potent immune response to monkeypox virus surface antigensFang Z, Monteiro V, Renauer P, Shang X, Suzuki K, Ling X, Bai M, Xiang Y, Levchenko A, Booth C, Lucas C, Chen S. Polyvalent mRNA vaccination elicited potent immune response to monkeypox virus surface antigens. Cell Research 2023, 33: 407-410. PMID: 36879038, PMCID: PMC9988199, DOI: 10.1038/s41422-023-00792-5.
- Massively parallel knock-in engineering of human T cellsDai X, Park J, Du Y, Na Z, Lam S, Chow R, Renauer P, Gu J, Xin S, Chu Z, Liao C, Clark P, Zhao H, Slavoff S, Chen S. Massively parallel knock-in engineering of human T cells. Nature Biotechnology 2023, 1-17. PMID: 36702900, DOI: 10.1038/s41587-022-01639-x.
- Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severityPark J, Lee K, Lam S, Moon K, Fang Z, Chen S. Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severity. Communications Biology 2023, 6: 76. PMID: 36670287, PMCID: PMC9853487, DOI: 10.1038/s42003-023-04447-4.
- RAMIHM generates fully human monoclonal antibodies by rapid mRNA immunization of humanized mice and BCR-seqRen P, Peng L, Yang L, Suzuki K, Fang Z, Renauer P, Lin Q, Bai M, Li T, Clark P, Klein D, Chen S. RAMIHM generates fully human monoclonal antibodies by rapid mRNA immunization of humanized mice and BCR-seq. Cell Chemical Biology 2023, 30: 85-96.e6. PMID: 36640761, PMCID: PMC9868106, DOI: 10.1016/j.chembiol.2022.12.005.
- Double knockout CRISPR screen for cancer resistance to T cell cytotoxicityPark J, Codina A, Ye L, Lam S, Guo J, Clark P, Zhou X, Peng L, Chen S. Double knockout CRISPR screen for cancer resistance to T cell cytotoxicity. Journal Of Hematology & Oncology 2022, 15: 172. PMID: 36456981, PMCID: PMC9716677, DOI: 10.1186/s13045-022-01389-y.
- LRRC15 inhibits SARS-CoV-2 cellular entry in transSong J, Chow RD, Peña-Hernández MA, Zhang L, Loeb SA, So EY, Liang OD, Ren P, Chen S, Wilen CB, Lee S. LRRC15 inhibits SARS-CoV-2 cellular entry in trans. PLOS Biology 2022, 20: e3001805. PMID: 36228039, PMCID: PMC9595563, DOI: 10.1371/journal.pbio.3001805.
- Bivalent mRNA vaccine booster induces robust antibody immunity against Omicron lineages BA.2, BA.2.12.1, BA.2.75 and BA.5Fang Z, Monteiro VS, Hahn AM, Grubaugh ND, Lucas C, Chen S. Bivalent mRNA vaccine booster induces robust antibody immunity against Omicron lineages BA.2, BA.2.12.1, BA.2.75 and BA.5. Cell Discovery 2022, 8: 108. PMID: 36220819, PMCID: PMC9552143, DOI: 10.1038/s41421-022-00473-4.
- Function and Cryo-EM structures of broadly potent bispecific antibodies against multiple SARS-CoV-2 Omicron sublineages.Ren P, Hu Y, Peng L, Yang L, Suzuki K, Fang Z, Bai M, Zhou L, Feng Y, Xiong Y, Chen S. Function and Cryo-EM structures of broadly potent bispecific antibodies against multiple SARS-CoV-2 Omicron sublineages. BioRxiv : The Preprint Server For Biology 2022 PMID: 35982661, PMCID: PMC9387138, DOI: 10.1101/2022.08.09.503414.
- Genome Engineering for Next-Generation Cellular ImmunotherapiesPark JJ, Lee KAV, Lam SZ, Tang K, Chen S. Genome Engineering for Next-Generation Cellular Immunotherapies. Biochemistry 2022 PMID: 35930700, DOI: 10.1021/acs.biochem.2c00340.
- Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroIDNa Z, Dai X, Zheng SJ, Bryant CJ, Loh KH, Su H, Luo Y, Buhagiar AF, Cao X, Baserga SJ, Chen S, Slavoff SA. Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID. Molecular Cell 2022, 82: 2900-2911.e7. PMID: 35905735, PMCID: PMC9662605, DOI: 10.1016/j.molcel.2022.06.035.
- Heterotypic vaccination responses against SARS-CoV-2 Omicron BA.2Fang Z, Peng L, Lucas C, Lin Q, Zhou L, Yang L, Feng Y, Ren P, Renauer PA, Monteiro VS, Hahn AM, Park JJ, Zhou X, Grubaugh N, Wilen C, Chen S. Heterotypic vaccination responses against SARS-CoV-2 Omicron BA.2. Cell Discovery 2022, 8: 69. PMID: 35853867, PMCID: PMC9295082, DOI: 10.1038/s41421-022-00435-w.
- Multiplexed LNP-mRNA vaccination against pathogenic coronavirus speciesPeng L, Fang Z, Renauer PA, McNamara A, Park JJ, Lin Q, Zhou X, Dong MB, Zhu B, Zhao H, Wilen CB, Chen S. Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species. Cell Reports 2022, 40: 111160. PMID: 35921835, PMCID: PMC9294034, DOI: 10.1016/j.celrep.2022.111160.
- Development of an efficient reproducible cell-cell transmission assay for rapid quantification of SARS-CoV-2 spike interaction with hACE2Ssenyange G, Kerfoot M, Zhao M, Farhadian S, Chen S, Peng L, Ren P, Dela Cruz CS, Gupta S, Sutton RE. Development of an efficient reproducible cell-cell transmission assay for rapid quantification of SARS-CoV-2 spike interaction with hACE2. Cell Reports Methods 2022, 2: 100252. PMID: 35757815, PMCID: PMC9213030, DOI: 10.1016/j.crmeth.2022.100252.
- Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2Fang Z, Peng L, Filler R, Suzuki K, McNamara A, Lin Q, Renauer PA, Yang L, Menasche B, Sanchez A, Ren P, Xiong Q, Strine M, Clark P, Lin C, Ko AI, Grubaugh ND, Wilen CB, Chen S. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nature Communications 2022, 13: 3250. PMID: 35668119, PMCID: PMC9169595, DOI: 10.1038/s41467-022-30878-4.
- Variant-specific vaccination induces systems immune responses and potent in vivo protection against SARS-CoV-2Peng L, Renauer PA, Ökten A, Fang Z, Park JJ, Zhou X, Lin Q, Dong MB, Filler R, Xiong Q, Clark P, Lin C, Wilen CB, Chen S. Variant-specific vaccination induces systems immune responses and potent in vivo protection against SARS-CoV-2. Cell Reports Medicine 2022, 3: 100634. PMID: 35561673, PMCID: PMC9040489, DOI: 10.1016/j.xcrm.2022.100634.
- Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617Peng L, Hu Y, Mankowski MC, Ren P, Chen RE, Wei J, Zhao M, Li T, Tripler T, Ye L, Chow RD, Fang Z, Wu C, Dong MB, Cook M, Wang G, Clark P, Nelson B, Klein D, Sutton R, Diamond MS, Wilen CB, Xiong Y, Chen S. Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nature Communications 2022, 13: 1638. PMID: 35347138, PMCID: PMC8960874, DOI: 10.1038/s41467-022-29288-3.
- A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapyYe L, Park JJ, Peng L, Yang Q, Chow RD, Dong MB, Lam SZ, Guo J, Tang E, Zhang Y, Wang G, Dai X, Du Y, Kim HR, Cao H, Errami Y, Clark P, Bersenev A, Montgomery RR, Chen S. A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metabolism 2022, 34: 595-614.e14. PMID: 35276062, PMCID: PMC8986623, DOI: 10.1016/j.cmet.2022.02.009.
- Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2.Fang Z, Peng L, Filler R, Suzuki K, McNamara A, Lin Q, Renauer PA, Yang L, Menasche B, Sanchez A, Ren P, Xiong Q, Strine M, Clark P, Lin C, Ko AI, Grubaugh ND, Wilen CB, Chen S. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. BioRxiv : The Preprint Server For Biology 2022 PMID: 35194606, PMCID: PMC8863141, DOI: 10.1101/2022.02.14.480449.
- High-content CRISPR screeningBock C, Datlinger P, Chardon F, Coelho M, Dong M, Lawson K, Lu T, Maroc L, Norman T, Song B, Stanley G, Chen S, Garnett M, Li W, Moffat J, Qi L, Shapiro R, Shendure J, Weissman J, Zhuang X. High-content CRISPR screening. Nature Reviews Methods Primers 2022, 2: 8. DOI: 10.1038/s43586-021-00093-4.
- High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cellsChen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology 2022, 7: eabl5652. PMID: 34914544, PMCID: PMC8977051, DOI: 10.1126/sciimmunol.abl5652.
- Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617.Peng L, Hu Y, Mankowski MC, Ren P, Chen RE, Wei J, Zhao M, Li T, Tripler T, Ye L, Chow RD, Fang Z, Wu C, Dong MB, Cook M, Wang G, Clark P, Nelson B, Klein D, Sutton R, Diamond MS, Wilen CB, Xiong Y, Chen S. Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. BioRxiv : The Preprint Server For Biology 2021 PMID: 34981065, PMCID: PMC8722602, DOI: 10.1101/2021.12.21.473733.
- Tumor immunology CRISPR screening: present, past, and futureDong MB, Tang K, Zhou X, Zhou JJ, Chen S. Tumor immunology CRISPR screening: present, past, and future. Trends In Cancer 2021, 8: 210-225. PMID: 34920978, PMCID: PMC8854335, DOI: 10.1016/j.trecan.2021.11.009.
- Metaviromic identification of discriminative genomic features in SARS-CoV-2 using machine learningPark JJ, Chen S. Metaviromic identification of discriminative genomic features in SARS-CoV-2 using machine learning. Patterns 2021, 3: 100407. PMID: 34812427, PMCID: PMC8598947, DOI: 10.1016/j.patter.2021.100407.
- Genomic analyses of new genes and their phenotypic effects reveal rapid evolution of essential functions in Drosophila developmentXia S, VanKuren NW, Chen C, Zhang L, Kemkemer C, Shao Y, Jia H, Lee U, Advani AS, Gschwend A, Vibranovski MD, Chen S, Zhang YE, Long M. Genomic analyses of new genes and their phenotypic effects reveal rapid evolution of essential functions in Drosophila development. PLOS Genetics 2021, 17: e1009654. PMID: 34242211, PMCID: PMC8270118, DOI: 10.1371/journal.pgen.1009654.
- Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changesRavindra NG, Alfajaro MM, Gasque V, Huston NC, Wan H, Szigeti-Buck K, Yasumoto Y, Greaney AM, Habet V, Chow RD, Chen JS, Wei J, Filler RB, Wang B, Wang G, Niklason LE, Montgomery RR, Eisenbarth SC, Chen S, Williams A, Iwasaki A, Horvath TL, Foxman EF, Pierce RW, Pyle AM, van Dijk D, Wilen CB. Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLOS Biology 2021, 19: e3001143. PMID: 33730024, PMCID: PMC8007021, DOI: 10.1371/journal.pbio.3001143.
- The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2Chow RD, Majety M, Chen S. The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2. Nature Communications 2021, 12: 4. PMID: 33397975, PMCID: PMC7782551, DOI: 10.1038/s41467-020-20323-9.
- CRISPR-GEMM Pooled Mutagenic Screening Identifies KMT2D as a Major Modulator of Immune Checkpoint BlockadeWang G, Chow RD, Zhu L, Bai Z, Ye L, Zhang F, Renauer PA, Dong MB, Dai X, Zhang X, Du Y, Cheng Y, Niu L, Chu Z, Kim K, Liao C, Clark P, Errami Y, Chen S. CRISPR-GEMM Pooled Mutagenic Screening Identifies KMT2D as a Major Modulator of Immune Checkpoint Blockade. Cancer Discovery 2020, 10: 1912-1933. PMID: 32887696, PMCID: PMC7710536, DOI: 10.1158/2159-8290.cd-19-1448.
- Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor Redirecting Host Protein Synthesis Machinery toward Viral RNAYuan S, Peng L, Park JJ, Hu Y, Devarkar SC, Dong MB, Shen Q, Wu S, Chen S, Lomakin IB, Xiong Y. Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor Redirecting Host Protein Synthesis Machinery toward Viral RNA. Molecular Cell 2020, 80: 1055-1066.e6. PMID: 33188728, PMCID: PMC7833686, DOI: 10.1016/j.molcel.2020.10.034.
- A web tool for the design of prime-editing guide RNAsChow RD, Chen JS, Shen J, Chen S. A web tool for the design of prime-editing guide RNAs. Nature Biomedical Engineering 2020, 5: 190-194. PMID: 32989284, PMCID: PMC7882013, DOI: 10.1038/s41551-020-00622-8.
- Abstract 4070: Development of MAEGI as a new class of immune gene therapy for cancer treatmentChen S. Abstract 4070: Development of MAEGI as a new class of immune gene therapy for cancer treatment. Cancer Research 2020, 80: 4070-4070. DOI: 10.1158/1538-7445.am2020-4070.
- Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunityWang G, Chow RD, Bai Z, Zhu L, Errami Y, Dai X, Dong MB, Ye L, Zhang X, Renauer PA, Park JJ, Shen L, Ye H, Fuchs CS, Chen S. Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nature Immunology 2019, 20: 1494-1505. PMID: 31611701, PMCID: PMC6858551, DOI: 10.1038/s41590-019-0500-4.
- In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastomaYe L, Park JJ, Dong MB, Yang Q, Chow RD, Peng L, Du Y, Guo J, Dai X, Wang G, Errami Y, Chen S. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nature Biotechnology 2019, 37: 1302-1313. PMID: 31548728, PMCID: PMC6834896, DOI: 10.1038/s41587-019-0246-4.
- Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous non-small cell lung cancerCraig M, Kaveh K, Woosley A, Brown AS, Goldman D, Eton E, Mehta RM, Dhawan A, Arai K, Rahman MM, Chen S, Nowak MA, Goldman A. Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous non-small cell lung cancer. PLOS Computational Biology 2019, 15: e1007278. PMID: 31449515, PMCID: PMC6709889, DOI: 10.1371/journal.pcbi.1007278.
- Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T CellsDong MB, Wang G, Chow RD, Ye L, Zhu L, Dai X, Park JJ, Kim HR, Errami Y, Guzman CD, Zhou X, Chen KY, Renauer PA, Du Y, Shen J, Lam SZ, Zhou JJ, Lannin DR, Herbst RS, Chen S. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell 2019, 178: 1189-1204.e23. PMID: 31442407, PMCID: PMC6719679, DOI: 10.1016/j.cell.2019.07.044.
- In vivo profiling of metastatic double knockouts through CRISPR–Cpf1 screensChow RD, Wang G, Ye L, Codina A, Kim HR, Shen L, Dong MB, Errami Y, Chen S. In vivo profiling of metastatic double knockouts through CRISPR–Cpf1 screens. Nature Methods 2019, 16: 405-408. PMID: 30962622, PMCID: PMC6592845, DOI: 10.1038/s41592-019-0371-5.
- One-step generation of modular CAR-T cells with AAV–Cpf1Dai X, Park JJ, Du Y, Kim HR, Wang G, Errami Y, Chen S. One-step generation of modular CAR-T cells with AAV–Cpf1. Nature Methods 2019, 16: 247-254. PMID: 30804551, PMCID: PMC6519746, DOI: 10.1038/s41592-019-0329-7.
- Convergent Identification and Interrogation of Tumor-Intrinsic Factors that Modulate Cancer Immunity In VivoCodina A, Renauer PA, Wang G, Chow RD, Park JJ, Ye H, Zhang K, Dong MB, Gassaway B, Ye L, Errami Y, Shen L, Chang A, Jain D, Herbst RS, Bosenberg M, Rinehart J, Fan R, Chen S. Convergent Identification and Interrogation of Tumor-Intrinsic Factors that Modulate Cancer Immunity In Vivo. Cell Systems 2019, 8: 136-151.e7. PMID: 30797773, PMCID: PMC6592847, DOI: 10.1016/j.cels.2019.01.004.
- Abstract B095: Mapping the genetic features of immune checkpoint responsiveness using AAV-CRISPR mediated in vivo screenWang G, Chow R, Bai Z, Ye L, Chen S. Abstract B095: Mapping the genetic features of immune checkpoint responsiveness using AAV-CRISPR mediated in vivo screen. Cancer Immunology Research 2019, 7: b095-b095. DOI: 10.1158/2326-6074.cricimteatiaacr18-b095.
- Sno-derived RNAs are prevalent molecular markers of cancer immunityChow RD, Chen S. Sno-derived RNAs are prevalent molecular markers of cancer immunity. Oncogene 2018, 37: 6442-6462. PMID: 30072739, PMCID: PMC6294694, DOI: 10.1038/s41388-018-0420-z.
- Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9Ye L, Wang C, Hong L, Sun N, Chen D, Chen S, Han F. Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discovery 2018, 4: 46. PMID: 30062046, PMCID: PMC6056518, DOI: 10.1038/s41421-018-0049-7.
- Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversionChow RD, Kim HR, Chen S. Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion. Nature Communications 2018, 9: 1903. PMID: 29765043, PMCID: PMC5954137, DOI: 10.1038/s41467-018-04158-z.
- Cancer CRISPR Screens In VivoChow RD, Chen S. Cancer CRISPR Screens In Vivo. Trends In Cancer 2018, 4: 349-358. PMID: 29709259, PMCID: PMC5935117, DOI: 10.1016/j.trecan.2018.03.002.
- Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screeningWang G, Chow RD, Ye L, Guzman CD, Dai X, Dong MB, Zhang F, Sharp PA, Platt RJ, Chen S. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening. Science Advances 2018, 4: eaao5508. PMID: 29503867, PMCID: PMC5829971, DOI: 10.1126/sciadv.aao5508.
- Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering ApplicationsPyzocha NK, Chen S. Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chemical Biology 2017, 13: 347-356. PMID: 29121460, PMCID: PMC6768076, DOI: 10.1021/acschembio.7b00800.
- AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastomaChow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW, Ye L, Errami Y, Dong MB, Martinez MA, Zhang S, Renauer P, Bilguvar K, Gunel M, Sharp PA, Zhang F, Platt RJ, Chen S. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature Neuroscience 2017, 20: 1329-1341. PMID: 28805815, PMCID: PMC5614841, DOI: 10.1038/nn.4620.
- Signal Transduction and Regulation: Insights into EvolutionYi S, Chen S, Zhang L, Sahni N. Signal Transduction and Regulation: Insights into Evolution. BioMed Research International 2016, 2016: 8604245. PMID: 27525280, PMCID: PMC4971294, DOI: 10.1155/2016/8604245.
- Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty AcidsK. D, Li Z, Lu AY, Sun F, Chen S, Rothe M, Menzel R, Sun F, Horvitz HR. Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. Cell 2015, 161: 1152-1163. PMID: 25981666, PMCID: PMC4441829, DOI: 10.1016/j.cell.2015.04.026.
- Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and MetastasisChen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA. Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell 2015, 160: 1246-1260. PMID: 25748654, PMCID: PMC4380877, DOI: 10.1016/j.cell.2015.02.038.
- CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer ModelingPlatt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F. CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell 2014, 159: 440-455. PMID: 25263330, PMCID: PMC4265475, DOI: 10.1016/j.cell.2014.09.014.
- Correction: Corrigendum: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotypeYin H, Xue W, Chen S, Bogorad R, Benedetti E, Grompe M, Koteliansky V, Sharp P, Jacks T, Anderson D. Correction: Corrigendum: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology 2014, 32: 952-952. DOI: 10.1038/nbt0914-952d.
- CRISPR-mediated direct mutation of cancer genes in the mouse liverXue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014, 514: 380-384. PMID: 25119044, PMCID: PMC4199937, DOI: 10.1038/nature13589.
- Global microRNA depletion suppresses tumor angiogenesisChen S, Xue Y, Wu X, Le C, Bhutkar A, Bell EL, Zhang F, Langer R, Sharp PA. Global microRNA depletion suppresses tumor angiogenesis. Genes & Development 2014, 28: 1054-1067. PMID: 24788094, PMCID: PMC4035535, DOI: 10.1101/gad.239681.114.
- Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cellsWu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotechnology 2014, 32: 670-676. PMID: 24752079, PMCID: PMC4145672, DOI: 10.1038/nbt.2889.
- Genome editing with Cas9 in adult mice corrects a disease mutation and phenotypeYin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology 2014, 32: 551-553. PMID: 24681508, PMCID: PMC4157757, DOI: 10.1038/nbt.2884.
- New Gene Evolution: Little Did We KnowLong M, VanKuren NW, Chen S, Vibranovski MD. New Gene Evolution: Little Did We Know. Annual Review Of Genetics 2013, 47: 307-333. PMID: 24050177, PMCID: PMC4281893, DOI: 10.1146/annurev-genet-111212-133301.
- Erratum: New genes as drivers of phenotypic evolutionChen S, Krinsky B, Long M. Erratum: New genes as drivers of phenotypic evolution. Nature Reviews Genetics 2013, 14: 744-744. DOI: 10.1038/nrg3584.
- New genes as drivers of phenotypic evolutionChen S, Krinsky BH, Long M. New genes as drivers of phenotypic evolution. Nature Reviews Genetics 2013, 14: 645-660. PMID: 23949544, PMCID: PMC4236023, DOI: 10.1038/nrg3521.
- Adaptive Evolution and the Birth of CTCF Binding Sites in the Drosophila GenomeNi X, Zhang YE, Nègre N, Chen S, Long M, White KP. Adaptive Evolution and the Birth of CTCF Binding Sites in the Drosophila Genome. PLOS Biology 2012, 10: e1001420. PMID: 23139640, PMCID: PMC3491045, DOI: 10.1371/journal.pbio.1001420.
- Reshaping of global gene expression networks and sex‐biased gene expression by integration of a young geneChen S, Ni X, Krinsky BH, Zhang YE, Vibranovski MD, White KP, Long M. Reshaping of global gene expression networks and sex‐biased gene expression by integration of a young gene. The EMBO Journal 2012, 31: 2798-2809. PMID: 22543869, PMCID: PMC3380208, DOI: 10.1038/emboj.2012.108.
- Frequent Recent Origination of Brain Genes Shaped the Evolution of Foraging Behavior in DrosophilaChen S, Spletter M, Ni X, White KP, Luo L, Long M. Frequent Recent Origination of Brain Genes Shaped the Evolution of Foraging Behavior in Drosophila. Cell Reports 2012, 1: 118-132. PMID: 22832161, PMCID: PMC4382513, DOI: 10.1016/j.celrep.2011.12.010.
- Roles of young serine-endopeptidase genes in survival and reproduction revealed rapid evolution of phenotypic effects at adult stagesChen S, Yang H, Krinsky BH, Zhang A, Long M. Roles of young serine-endopeptidase genes in survival and reproduction revealed rapid evolution of phenotypic effects at adult stages. Fly 2011, 5: 345-351. PMID: 21946255, PMCID: PMC3266076, DOI: 10.4161/fly.5.4.17808.
- Highly Tissue Specific Expression of Sphinx Supports Its Male Courtship Related Role in Drosophila melanogasterChen Y, Dai H, Chen S, Zhang L, Long M. Highly Tissue Specific Expression of Sphinx Supports Its Male Courtship Related Role in Drosophila melanogaster. PLOS ONE 2011, 6: e18853. PMID: 21541324, PMCID: PMC3082539, DOI: 10.1371/journal.pone.0018853.
- New Genes in Drosophila Quickly Become EssentialChen S, Zhang YE, Long M. New Genes in Drosophila Quickly Become Essential. Science 2010, 330: 1682-1685. PMID: 21164016, PMCID: PMC7211344, DOI: 10.1126/science.1196380.
- The evolution of courtship behaviors through the origination of a new gene in DrosophilaDai H, Chen Y, Chen S, Mao Q, Kennedy D, Landback P, Eyre-Walker A, Du W, Long M. The evolution of courtship behaviors through the origination of a new gene in Drosophila. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 7478-7483. PMID: 18508971, PMCID: PMC2396706, DOI: 10.1073/pnas.0800693105.
- Biosynthesis, Purification, and Substrate Specificity of Severe Acute Respiratory Syndrome Coronavirus 3C-like Proteinase*Fan K, Wei P, Feng Q, Chen S, Huang C, Ma L, Lai B, Pei J, Liu Y, Chen J, Lai L. Biosynthesis, Purification, and Substrate Specificity of Severe Acute Respiratory Syndrome Coronavirus 3C-like Proteinase*. Journal Of Biological Chemistry 2003, 279: 1637-1642. PMID: 14561748, PMCID: PMC7980035, DOI: 10.1074/jbc.m310875200.
- RNA-dependent RNA polymerase gene sequence from foot-and-mouth disease virus in Hong KongChen X, Feng Q, Wu Z, Liu Y, Huang K, Shi R, Chen S, Lu W, Ding M, Collins R, Fung Y, Lau L, Yu A, Chen J. RNA-dependent RNA polymerase gene sequence from foot-and-mouth disease virus in Hong Kong. Biochemical And Biophysical Research Communications 2003, 308: 899-905. PMID: 12927804, DOI: 10.1016/s0006-291x(03)01511-0.