Michael Crair, PhD
Research & Publications
Biography
News
Locations
Research Summary
In the brains of mammals, birds and invertebrates, the sensory world is organized into regular neuronal arrays or maps. Common examples are the map of body surface in somatosensory cortex (the so called "homunculus") and the representation of oriented bars or edges in visual cortex.
We are interested in understanding how genes ('nature') and the environment ('nurture') interact to guide the development of neuronal maps. Our research focuses on development of the visual and somatosensory systems. We employ a broad range of experimental techniques, including neuroanatomy, molecular biology and biochemistry, in vitro and in vivo electrophysiology as well as optical imaging.
This array of approaches allows us to examine neural circuit development from many perspectives, and provides synergistic impetus to our exploration of the cellular and molecular mechanisms for sensory map development.
Specialized Terms: Neural circuit development; Synapse formation; Visual system development; Cortex development
Coauthors
Research Interests
Brain; Cerebral Cortex; Child Development; Nervous System; Synaptic Transmission; Neuronal Plasticity; Neurosciences; Visual Cortex
Research Images
Selected Publications
- Functional network properties derived from wide-field calcium imaging differ with wakefulness and across cell typeO’Connor D, Mandino F, Shen X, Horien C, Ge X, Herman P, Hyder F, Crair M, Papademetris X, Lake E, Constable. Functional network properties derived from wide-field calcium imaging differ with wakefulness and across cell type NeuroImage 2022, 264: 119735. PMID: 36347441, PMCID: PMC9808917, DOI: 10.1016/j.neuroimage.2022.119735.
- Retinal waves prime visual motion detection by simulating future optic flowGe X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. Retinal waves prime visual motion detection by simulating future optic flow Science 2021, 373 PMID: 34437090, PMCID: PMC8841103, DOI: 10.1126/science.abd0830.
- Preservation of vision after CaMKII-mediated protection of retinal ganglion cellsGuo X, Zhou J, Starr C, Mohns EJ, Li Y, Chen EP, Yoon Y, Kellner CP, Tanaka K, Wang H, Liu W, Pasquale LR, Demb JB, Crair MC, Chen B. Preservation of vision after CaMKII-mediated protection of retinal ganglion cells Cell 2021, 184: 4299-4314.e12. PMID: 34297923, PMCID: PMC8530265, DOI: 10.1016/j.cell.2021.06.031.
- Author Correction: Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRILake EMR, Ge X, Shen X, Herman P, Hyder F, Cardin JA, Higley MJ, Scheinost D, Papademetris X, Crair MC, Constable RT. Author Correction: Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI Nature Methods 2021, 18: 835-835. PMID: 34163088, DOI: 10.1038/s41592-021-01217-0.
- Efferent feedback controls bilateral auditory spontaneous activityWang Y, Sanghvi M, Gribizis A, Zhang Y, Song L, Morley B, Barson DG, Santos-Sacchi J, Navaratnam D, Crair M. Efferent feedback controls bilateral auditory spontaneous activity Nature Communications 2021, 12: 2449. PMID: 33907194, PMCID: PMC8079389, DOI: 10.1038/s41467-021-22796-8.
- Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual CortexWang BS, Bernardez Sarria MS, An X, He M, Alam NM, Prusky GT, Crair MC, Huang ZJ. Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex Neuron 2020, 109: 502-515.e7. PMID: 33290732, PMCID: PMC7943176, DOI: 10.1016/j.neuron.2020.11.004.
- Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRILake EMR, Ge X, Shen X, Herman P, Hyder F, Cardin JA, Higley MJ, Scheinost D, Papademetris X, Crair MC, Constable RT. Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI Nature Methods 2020, 17: 1262-1271. PMID: 33139894, PMCID: PMC7704940, DOI: 10.1038/s41592-020-00984-6.
- Mesoscopic Imaging: Shining a Wide Light on Large-Scale Neural DynamicsCardin JA, Crair MC, Higley MJ. Mesoscopic Imaging: Shining a Wide Light on Large-Scale Neural Dynamics Neuron 2020, 108: 33-43. PMID: 33058764, PMCID: PMC7577373, DOI: 10.1016/j.neuron.2020.09.031.
- Transverse sinus injections drive robust whole-brain expression of transgenesHamodi AS, Sabino A, Fitzgerald ND, Moschou D, Crair M. Transverse sinus injections drive robust whole-brain expression of transgenes ELife 2020, 9: e53639. PMID: 32420870, PMCID: PMC7266618, DOI: 10.7554/elife.53639.
- Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuitsBarson D, Hamodi AS, Shen X, Lur G, Constable RT, Cardin JA, Crair MC, Higley MJ. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits Nature Methods 2019, 17: 107-113. PMID: 31686040, PMCID: PMC6946863, DOI: 10.1038/s41592-019-0625-2.
- Visual Cortex Gains Independence from Peripheral Drive before Eye OpeningGribizis A, Ge X, Daigle TL, Ackman JB, Zeng H, Lee D, Crair MC. Visual Cortex Gains Independence from Peripheral Drive before Eye Opening Neuron 2019, 104: 711-723.e3. PMID: 31561919, PMCID: PMC6872942, DOI: 10.1016/j.neuron.2019.08.015.
- Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1Ribic A, Crair MC, Biederer T. Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1 Cell Reports 2019, 26: 381-393.e6. PMID: 30625321, PMCID: PMC6345548, DOI: 10.1016/j.celrep.2018.12.069.
- Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinasYao K, Qiu S, Wang YV, Park SJH, Mohns EJ, Mehta B, Liu X, Chang B, Zenisek D, Crair MC, Demb JB, Chen B. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas Nature 2018, 560: 484-488. PMID: 30111842, PMCID: PMC6107416, DOI: 10.1038/s41586-018-0425-3.
- Homeostatic Control of Spontaneous Activity in the Developing Auditory SystemBabola TA, Li S, Gribizis A, Lee BJ, Issa JB, Wang HC, Crair MC, Bergles DE. Homeostatic Control of Spontaneous Activity in the Developing Auditory System Neuron 2018, 99: 511-524.e5. PMID: 30077356, PMCID: PMC6100752, DOI: 10.1016/j.neuron.2018.07.004.
- Architecture, Function, and Assembly of the Mouse Visual SystemSeabrook TA, Burbridge TJ, Crair MC, Huberman AD. Architecture, Function, and Assembly of the Mouse Visual System Annual Review Of Neuroscience 2017, 40: 499-538. PMID: 28772103, DOI: 10.1146/annurev-neuro-071714-033842.
- Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus.Diao Y, Cui L, Chen Y, Burbridge TJ, Han W, Wirth B, Sestan N, Crair MC, Zhang J. Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus. Cerebral Cortex 2017, 28: 1168-1182. PMID: 28334242, PMCID: PMC6059179, DOI: 10.1093/cercor/bhx028.
- Activity-dependent development of visual receptive fieldsThompson A, Gribizis A, Chen C, Crair MC. Activity-dependent development of visual receptive fields Current Opinion In Neurobiology 2017, 42: 136-143. PMID: 28088066, PMCID: PMC5375035, DOI: 10.1016/j.conb.2016.12.007.
- Multiscale optical imaging of cortical activity in mouseBarson D, Hamodi A, Lur G, Cardin J, Crair M, Higley M. Multiscale optical imaging of cortical activity in mouse 2017, jtu4a.13. DOI: 10.1364/boda.2017.jtu4a.13.
- Reconnecting Eye to BrainCrair MC, Mason CA. Reconnecting Eye to Brain Journal Of Neuroscience 2016, 36: 10707-10722. PMID: 27798125, PMCID: PMC5083002, DOI: 10.1523/jneurosci.1711-16.2016.
- Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual CircuitsXu HP, Burbridge TJ, Ye M, Chen M, Ge X, Zhou ZJ, Crair MC. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits Journal Of Neuroscience 2016, 36: 3871-3886. PMID: 27030771, PMCID: PMC4812142, DOI: 10.1523/jneurosci.3549-15.2016.
- A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosaGuo X, Wang SB, Xu H, Ribic A, Mohns EJ, Zhou Y, Zhu X, Biederer T, Crair MC, Chen B. A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa Nature Communications 2015, 6: 8005. PMID: 26272629, PMCID: PMC4538705, DOI: 10.1038/ncomms9005.
- Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequencyXu HP, Burbridge TJ, Chen MG, Ge X, Zhang Y, Zhou ZJ, Crair MC. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency Developmental Neurobiology 2015, 75: 621-640. PMID: 25787992, PMCID: PMC4697738, DOI: 10.1002/dneu.22288.
- Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine ReceptorsBurbridge TJ, Xu HP, Ackman JB, Ge X, Zhang Y, Ye MJ, Zhou ZJ, Xu J, Contractor A, Crair MC. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors Neuron 2014, 84: 1049-1064. PMID: 25466916, PMCID: PMC4258148, DOI: 10.1016/j.neuron.2014.10.051.
- Laminar and Temporal Expression Dynamics of Coding and Noncoding RNAs in the Mouse NeocortexFertuzinhos S, Li M, Kawasawa YI, Ivic V, Franjic D, Singh D, Crair M, Šestan N. Laminar and Temporal Expression Dynamics of Coding and Noncoding RNAs in the Mouse Neocortex Cell Reports 2014, 6: 938-950. PMID: 24561256, PMCID: PMC3999901, DOI: 10.1016/j.celrep.2014.01.036.
- Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1Ribic A, Liu X, Crair MC, Biederer T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1 The Journal Of Comparative Neurology 2014, 522: 900-920. PMID: 23982969, PMCID: PMC3947154, DOI: 10.1002/cne.23452.
- Role of emergent neural activity in visual map developmentAckman JB, Crair MC. Role of emergent neural activity in visual map development Current Opinion In Neurobiology 2013, 24: 166-175. PMID: 24492092, PMCID: PMC3957181, DOI: 10.1016/j.conb.2013.11.011.
- Laminar and Columnar Development of Barrel Cortex Relies on Thalamocortical NeurotransmissionLi H, Fertuzinhos S, Mohns E, Hnasko TS, Verhage M, Edwards R, Sestan N, Crair MC. Laminar and Columnar Development of Barrel Cortex Relies on Thalamocortical Neurotransmission Neuron 2013, 79: 970-986. PMID: 24012009, PMCID: PMC3768017, DOI: 10.1016/j.neuron.2013.06.043.
- Competition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculusFurman M, Xu HP, Crair MC. Competition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculus Journal Of Neurophysiology 2013, 110: 1441-1454. PMID: 23741047, PMCID: PMC3763158, DOI: 10.1152/jn.01066.2012.
- Optogenetic tools for in vivo applications in neonatal miceZhang Y, Qin N, Diao Y, Guan Y, Fan L, Crair M, Zhang J. Optogenetic tools for in vivo applications in neonatal mice Proceedings Of SPIE 2012, 8548: 854842-854842-9. DOI: 10.1117/12.2001205.
- Retinal waves coordinate patterned activity throughout the developing visual systemAckman JB, Burbridge TJ, Crair MC. Retinal waves coordinate patterned activity throughout the developing visual system Nature 2012, 490: 219-225. PMID: 23060192, PMCID: PMC3962269, DOI: 10.1038/nature11529.
- Synapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye openingFurman M, Crair MC. Synapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye opening Journal Of Neurophysiology 2012, 107: 3200-3216. PMID: 22402661, PMCID: PMC3774562, DOI: 10.1152/jn.00943.2011.
- Role of adenylate cyclase 1 in retinofugal map developmentDhande OS, Bhatt S, Anishchenko A, Elstrott J, Iwasato T, Swindell EC, Xu H, Jamrich M, Itohara S, Feller MB, Crair MC. Role of adenylate cyclase 1 in retinofugal map development The Journal Of Comparative Neurology 2012, 520: 1562-1583. PMID: 22102330, PMCID: PMC3563095, DOI: 10.1002/cne.23000.
- Visual map development depends on the temporal pattern of binocular activity in miceZhang J, Ackman JB, Xu HP, Crair MC. Visual map development depends on the temporal pattern of binocular activity in mice Nature Neuroscience 2011, 15: 298-307. PMID: 22179110, PMCID: PMC3267873, DOI: 10.1038/nn.3007.
- An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map DevelopmentXu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development Neuron 2011, 70: 1115-1127. PMID: 21689598, PMCID: PMC3119851, DOI: 10.1016/j.neuron.2011.04.028.
- How do barrels form in somatosensory cortex?Li H, Crair MC. How do barrels form in somatosensory cortex? Annals Of The New York Academy Of Sciences 2011, 1225: 119-129. PMID: 21534999, PMCID: PMC4700879, DOI: 10.1111/j.1749-6632.2011.06024.x.
- Transfection of mouse retinal ganglion cells by in vivo electroporation.Dhande OS, Crair MC. Transfection of mouse retinal ganglion cells by in vivo electroporation. Journal Of Visualized Experiments 2011 PMID: 21525846, PMCID: PMC3169246, DOI: 10.3791/2678.
- Development of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out MiceDhande OS, Hua EW, Guh E, Yeh J, Bhatt S, Zhang Y, Ruthazer ES, Feller MB, Crair MC. Development of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice Journal Of Neuroscience 2011, 31: 3384-3399. PMID: 21368050, PMCID: PMC3060716, DOI: 10.1523/jneurosci.4899-10.2011.
- Visualization and Manipulation of Neural Activity in the Developing Vertebrate Nervous SystemZhang J, Ackman JB, Dhande OS, Crair MC. Visualization and Manipulation of Neural Activity in the Developing Vertebrate Nervous System Frontiers In Molecular Neuroscience 2011, 4: 43. PMID: 22121343, PMCID: PMC3219918, DOI: 10.3389/fnmol.2011.00043.
- The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the RetinaXu HP, Chen H, Ding Q, Xie ZH, Chen L, Diao L, Wang P, Gan L, Crair MC, Tian N. The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina Neuron 2010, 65: 503-515. PMID: 20188655, PMCID: PMC3037728, DOI: 10.1016/j.neuron.2010.01.035.
- Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculusChandrasekaran AR, Furuta Y, Crair MC. Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus The Journal Of Physiology 2009, 587: 953-963. PMID: 19153163, PMCID: PMC2673768, DOI: 10.1113/jphysiol.2008.160952.
- Long-Term Potentiation and Long-Term Depression in Experience-Dependent PlasticityCrair M, Shah R. Long-Term Potentiation and Long-Term Depression in Experience-Dependent Plasticity 2009, 561-570. DOI: 10.1016/b978-008045046-9.01213-4.
- Mechanisms of response homeostasis during retinocollicular map formationShah RD, Crair MC. Mechanisms of response homeostasis during retinocollicular map formation The Journal Of Physiology 2008, 586: 4363-4369. PMID: 18617562, PMCID: PMC2614012, DOI: 10.1113/jphysiol.2008.157222.
- Bone Morphogenetic Proteins, Eye Patterning, and Retinocollicular Map Formation in the MousePlas DT, Dhande OS, Lopez JE, Murali D, Thaller C, Henkemeyer M, Furuta Y, Overbeek P, Crair MC. Bone Morphogenetic Proteins, Eye Patterning, and Retinocollicular Map Formation in the Mouse Journal Of Neuroscience 2008, 28: 7057-7067. PMID: 18614674, PMCID: PMC2667968, DOI: 10.1523/jneurosci.3598-06.2008.
- Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel DevelopmentIwasato T, Inan M, Kanki H, Erzurumlu RS, Itohara S, Crair MC. Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development Journal Of Neuroscience 2008, 28: 5931-5943. PMID: 18524897, PMCID: PMC2733830, DOI: 10.1523/jneurosci.0815-08.2008.
- State-Dependent Bidirectional Modification of Somatic Inhibition in Neocortical Pyramidal CellsKurotani T, Yamada K, Yoshimura Y, Crair MC, Komatsu Y. State-Dependent Bidirectional Modification of Somatic Inhibition in Neocortical Pyramidal Cells Neuron 2008, 57: 905-916. PMID: 18367091, PMCID: PMC2880402, DOI: 10.1016/j.neuron.2008.01.030.
- Retinocollicular Synapse Maturation and Plasticity Are Regulated by Correlated Retinal WavesShah RD, Crair MC. Retinocollicular Synapse Maturation and Plasticity Are Regulated by Correlated Retinal Waves Journal Of Neuroscience 2008, 28: 292-303. PMID: 18171946, PMCID: PMC6671137, DOI: 10.1523/jneurosci.4276-07.2008.
- Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout MiceAlbright MJ, Weston MC, Inan M, Rosenmund C, Crair MC. Increased Thalamocortical Synaptic Response and Decreased Layer IV Innervation in GAP-43 Knockout Mice Journal Of Neurophysiology 2007, 98: 1610-1625. PMID: 17581849, DOI: 10.1152/jn.00219.2007.
- Developmental Homeostasis of Mouse Retinocollicular SynapsesChandrasekaran AR, Shah RD, Crair MC. Developmental Homeostasis of Mouse Retinocollicular Synapses Journal Of Neuroscience 2007, 27: 1746-1755. PMID: 17301182, PMCID: PMC6673732, DOI: 10.1523/jneurosci.4383-06.2007.
- Development of Cortical Maps: Perspectives From the Barrel CortexInan M, Crair MC. Development of Cortical Maps: Perspectives From the Barrel Cortex The Neuroscientist 2007, 13: 49-61. PMID: 17229975, DOI: 10.1177/1073858406296257.
- Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP SignalingInan M, Lu HC, Albright MJ, She WC, Crair MC. Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling Journal Of Neuroscience 2006, 26: 4338-4349. PMID: 16624954, PMCID: PMC6674004, DOI: 10.1523/jneurosci.3745-05.2006.
- Role of Efficient Neurotransmitter Release in Barrel Map DevelopmentLu HC, Butts DA, Kaeser PS, She WC, Janz R, Crair MC. Role of Efficient Neurotransmitter Release in Barrel Map Development Journal Of Neuroscience 2006, 26: 2692-2703. PMID: 16525048, PMCID: PMC6675166, DOI: 10.1523/jneurosci.3956-05.2006.
- Pretarget sorting of retinocollicular axons in the mousePlas DT, Lopez JE, Crair MC. Pretarget sorting of retinocollicular axons in the mouse The Journal Of Comparative Neurology 2005, 491: 305-319. PMID: 16175549, PMCID: PMC2716708, DOI: 10.1002/cne.20694.
- A Digital Atlas to Characterize the Mouse Brain TranscriptomeCarson JP, Ju T, Lu HC, Thaller C, Xu M, Pallas SL, Crair MC, Warren J, Chiu W, Eichele G. A Digital Atlas to Characterize the Mouse Brain Transcriptome PLOS Computational Biology 2005, 1: e41. PMID: 16184189, PMCID: PMC1215388, DOI: 10.1371/journal.pcbi.0010041.
- Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the MouseChandrasekaran AR, Plas DT, Gonzalez E, Crair MC. Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse Journal Of Neuroscience 2005, 25: 6929-6938. PMID: 16033903, PMCID: PMC6725341, DOI: 10.1523/jneurosci.1470-05.2005.
- Mutations in Drosophila sec15 Reveal a Function in Neuronal Targeting for a Subset of Exocyst ComponentsMehta SQ, Hiesinger PR, Beronja S, Zhai RG, Schulze KL, Verstreken P, Cao Y, Zhou Y, Tepass U, Crair MC, Bellen HJ. Mutations in Drosophila sec15 Reveal a Function in Neuronal Targeting for a Subset of Exocyst Components Neuron 2005, 46: 219-232. PMID: 15848801, DOI: 10.1016/j.neuron.2005.02.029.
- Distinct developmental programs require different levels of Bmp signaling during mouse retinal developmentMurali D, Yoshikawa S, Corrigan RR, Plas DJ, Crair MC, Oliver G, Lyons KM, Mishina Y, Furuta Y. Distinct developmental programs require different levels of Bmp signaling during mouse retinal development Development 2005, 132: 913-923. PMID: 15673568, DOI: 10.1242/dev.01673.
- A Digital Atlas to Characterize the Mouse Brain TranscriptomeCarson J, Ju T, Lu H, Thaller C, Xu M, Pallas S, Crair M, Warren J, Chiu W, Eichele G. A Digital Atlas to Characterize the Mouse Brain Transcriptome PLOS Computational Biology 2005, preprint: e41. DOI: 10.1371/journal.pcbi.0010041.eor.
- Adenylate Cyclase 1 dependent refinement of retinotopic maps in the mousePlas DT, Visel A, Gonzalez E, She WC, Crair MC. Adenylate Cyclase 1 dependent refinement of retinotopic maps in the mouse Vision Research 2004, 44: 3357-3364. PMID: 15536003, DOI: 10.1016/j.visres.2004.09.036.
- Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map developmentLu HC, She WC, Plas DT, Neumann PE, Janz R, Crair MC. Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map development Nature Neuroscience 2003, 6: 939-947. PMID: 12897788, DOI: 10.1038/nn1106.
- Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth.Wang SW, Mu X, Bowers WJ, Kim DS, Plas DJ, Crair MC, Federoff HJ, Gan L, Klein WH. Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development 2002, 129: 467-77. PMID: 11807038, DOI: 10.1242/dev.129.2.467.
- Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit CompositionLu H, Gonzalez E, Crair M. Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition Neuron 2001, 32: 619-634. PMID: 11719203, DOI: 10.1016/s0896-6273(01)00501-3.
- Neurotrophin-4/5 Alters Responses and Blocks the Effect of Monocular Deprivation in Cat Visual Cortex during the Critical PeriodGillespie D, Crair M, Stryker M. Neurotrophin-4/5 Alters Responses and Blocks the Effect of Monocular Deprivation in Cat Visual Cortex during the Critical Period Journal Of Neuroscience 2000, 20: 9174-9186. PMID: 11124995, PMCID: PMC2412905, DOI: 10.1523/jneurosci.20-24-09174.2000.
- Emergence of ocular dominance columns in cat visual cortex by 2 weeks of ageCrair M, Horton J, Antonini A, Stryker M. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age The Journal Of Comparative Neurology 2000, 430: 235-249. PMID: 11135259, PMCID: PMC2412906, DOI: 10.1002/1096-9861(20010205)430:2<235::aid-cne1028>3.0.co;2-p.
- The Nuclear Orphan Receptor COUP-TFI Is Required for Differentiation of Subplate Neurons and Guidance of Thalamocortical AxonsZhou C, Qiu Y, Pereira F, Crair M, Tsai S, Tsai M. The Nuclear Orphan Receptor COUP-TFI Is Required for Differentiation of Subplate Neurons and Guidance of Thalamocortical Axons Neuron 1999, 24: 847-859. PMID: 10624948, DOI: 10.1016/s0896-6273(00)81032-6.
- Altered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recordingHigashi S, Crair MC, Kurotani T, Inokawa H, Toyama K. Altered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recording Neuroscience 1999, 91: 439-452. PMID: 10366001, DOI: 10.1016/s0306-4522(98)00666-6.
- Neuronal activity during development: permissive or instructive?Crair M. Neuronal activity during development: permissive or instructive? Current Opinion In Neurobiology 1999, 9: 88-93. PMID: 10072369, DOI: 10.1016/s0959-4388(99)80011-7.
- Morphology of Single Geniculocortical Afferents and Functional Recovery of the Visual Cortex after Reverse Monocular Deprivation in the KittenAntonini A, Gillespie DC, Crair MC, Stryker MP. Morphology of Single Geniculocortical Afferents and Functional Recovery of the Visual Cortex after Reverse Monocular Deprivation in the Kitten Journal Of Neuroscience 1998, 18: 9896-9909. PMID: 9822746, PMCID: PMC2452997, DOI: 10.1523/jneurosci.18-23-09896.1998.
- The Role of Visual Experience in the Development of Columns in Cat Visual CortexCrair M, Gillespie D, Stryker M. The Role of Visual Experience in the Development of Columns in Cat Visual Cortex Science 1998, 279: 566-570. PMID: 9438851, PMCID: PMC2453000, DOI: 10.1126/science.279.5350.566.
- Relationship between the Ocular Dominance and Orientation Maps in Visual Cortex of Monocularly Deprived CatsCrair M, Ruthazer E, Gillespie D, Stryker M. Relationship between the Ocular Dominance and Orientation Maps in Visual Cortex of Monocularly Deprived Cats Neuron 1997, 19: 307-318. PMID: 9292721, DOI: 10.1016/s0896-6273(00)80941-1.
- Ocular Dominance Peaks at Pinwheel Center Singularities of the Orientation Map in Cat Visual CortexCrair M, Ruthazer E, Gillespie D, Stryker M. Ocular Dominance Peaks at Pinwheel Center Singularities of the Orientation Map in Cat Visual Cortex Journal Of Neurophysiology 1997, 77: 3381-3385. PMID: 9212282, DOI: 10.1152/jn.1997.77.6.3381.
- Silent Synapses during Development of Thalamocortical InputsIsaac J, Crair M, Nicoll R, Malenka R. Silent Synapses during Development of Thalamocortical Inputs Neuron 1997, 18: 269-280. PMID: 9052797, DOI: 10.1016/s0896-6273(00)80267-6.
- Stimulus‐dependent induction of long‐term potentiation in CA1 area of the hippocampus: Experiment and modelAihara T, Tsukada M, Crair M, Shinomoto S. Stimulus‐dependent induction of long‐term potentiation in CA1 area of the hippocampus: Experiment and model Hippocampus 1997, 7: 416-426. PMID: 9287081, DOI: 10.1002/(sici)1098-1063(1997)7:4<416::aid-hipo7>3.0.co;2-g.
- [The development of rat somatosensory (barrel) cortex visualized by optical recording].Kurotani T, Crair MC, Higashi S, Toyama K, Molnar Z. [The development of rat somatosensory (barrel) cortex visualized by optical recording]. Protein (Tokyo) 1996, 41: 758-65. PMID: 8787046.
- A critical period for long-term potentiation at thalamocortical synapsesCrair M, Malenka R. A critical period for long-term potentiation at thalamocortical synapses Nature 1995, 375: 325-328. PMID: 7753197, DOI: 10.1038/375325a0.
- The development of rat somatosensory “barrel” cortex investigated by an optical recordingCrair M, Molnar Z, Higashi S, Kurotani T, Toyama K. The development of rat somatosensory “barrel” cortex investigated by an optical recording Neuroscience Research Supplements 1994, 19: s6. DOI: 10.1016/0921-8696(94)92284-5.
- 1837 Imaging the development of rat somatosensory “barrel” cortex with a voltage sensitive dyeCrair M, Molnar Z, Higashi S, Kurotani T, Toyama K. 1837 Imaging the development of rat somatosensory “barrel” cortex with a voltage sensitive dye Neuroscience Research Supplements 1993, 18: s207. DOI: 10.1016/s0921-8696(05)81262-9.
- 1838 Neural excitation in somatosensory “barrel” cortex of the rat studied by optical recordingHigashi S, Crair M, Kurotani T, Molnar Z, Toyama K. 1838 Neural excitation in somatosensory “barrel” cortex of the rat studied by optical recording Neuroscience Research Supplements 1993, 18: s207. DOI: 10.1016/s0921-8696(05)81263-0.