Skip to Main Content

Kristen Brennand, PhD

she/her/hers
Elizabeth Mears and House Jameson Professor of Psychiatry; Co-director, Science Fellows Program

Research Summary

My laboratory combines expertise in genetics, neuroscience, and stem cells, in order to identify the mechanisms that underlie brain disease. Our focus lies in resolving the convergence of, and complex interplay between, the many risk variants linked to disease, towards the goal of facilitating the clinical translation of genetic findings.

Extensive Research Description

Each person’s distinct genetic, epigenetic, and environmental risk profile predisposes them to some phenotypes and confers resilience to others. My laboratory seeks to decode highly complex genetic insights into medically actionable information, better connecting the expanding list of genetic loci associated with human disease to pathophysiology. Our goal is to improve diagnostics, predict clinical trajectories, and identify pre-symptomatic points of therapeutic intervention.

Towards this, we employ a functional genomics approach that integrates stem cell models and genome engineering to resolve the impact of patient-specific variants across cell types, genetic backgrounds, and environmental conditions. Individually small risk effects combine to yield much larger impacts in aggregate, but the interactions between the myriad variants remain undetermined. Is there a “tipping point” between health and disease? Can ameliorative early interventions “untip” genetic disease risk? We seek to uncover disease-associated interactions within and between the cell types of the brain, querying the impacts of complex genetic risk within increasingly sophisticated neuronal circuits. Thus, we strive to translate risk “variants to genes”, “genes to pathways”, and “pathways to circuits”, revealing the convergent, additive, and synergistic relationships between risk factors within and between the cell types of the brain.

Even for highly penetrant mutations, a spectrum of phenotypes exist. We hope to understand the genetic, cellular, and environmental contexts that buffer genetic risk, and in doing so, develop interventions to help individuals achieve their greatest phenotypic potential. Thus, the variable penetrance of risk variants can be reframed as phenotypic resilience, evidence of biological “cures” capable of limiting, modifying, or preventing disease in individuals with otherwise high genetic predispositions. Such insights could identify therapeutics tailored to an individual’s specific risk profile, and so springboard the development of novel, personalized approaches to treat disease.

Coauthors

Research Interests

Biological Psychiatry; Neurodegenerative Diseases

Public Health Interests

Genetics, Genomics, Epigenetics

Research Images

Selected Publications