Anne Eichmann, PhD
Research & Publications
Biography
News
Research Summary
Vertebrate blood vessels form stereotyped, hierarchical branched networks. Specialized endothelial cells (EC) called tip cells located at the extremities of growing capillary sprouts mediate their directional outgrowth. Following behind tip cells, other EC termed stalk cells form the capillary lumen and proliferate. Specific gene expression profiles in tip and stalk cells allow them to acquire their characteristic morphological features. Tip cells also show similarities to axonal growth cones and express receptors for axon guidance cues. Research in my lab is aimed at understanding the function of tip cell-specific signaling molecules, with the goal to manipulate guided vascular patterning. Another focus in the laboratory is to understand functions of vascular endothelial growth factors in the nervous system.
Specialized Terms: Vascular development and angiogenesis; Guidance of vascular patterning; Tip cells; Axonal growth cones; Vascular growth factors in the nervous system
Extensive Research Description
Specialized endothelial cells (EC) called tip cells located at the extremities of growing capillary sprouts mediate guided vascular patterning. Tip cells exhibit characteristic features, including extension of filopodia that explore the tip cell environment, lack of a lumen and a slow proliferation rate. Following behind tip cells, other EC termed stalk cells form the capillary lumen and proliferate. Tip cell selection is induced by VEGF signaling through VEGFR2. We and others have shown that tip cells also express high levels of the endothelial-specific Notch ligand Delta-like 4 (Dll4). Inactivation of one allele of the Dll4 gene in mice and pharmacological inhibition of Notch signaling using gamma-secretase inhibitors causes excessive tip cell formation. Dll4 inactivation leads to alterations in VEGF receptor levels, suggesting that Dll4 negatively regulates the sensitivity of ECs to VEGF and so acts as a ‘brake’ on VEGF signaling during capillary sprouting to ensure that only a limited number of cells form tips. Isolation of EC from dll4+/- mice has allowed us to identify novel tip-cell enriched genes, the function of which we are currently investigating.
Capillary sprouting also shows morphological similarities to axon guidance. Like endothelial tip cells, axonal growth cones extend filopodia that sense and respond to extracellular guidance cues. By screening for the expression of axon guidance molecules in EC, we have identified several key molecules regulating capillary guidance. The Netrin receptor UNC5B is expressed in arterial EC and in tip cells. Loss of function of Unc5b in mouse and zebrafish embryos leads to ectopic filopodial extension from endothelial tip cells and excessive blood vessel branching. Treatment of endothelial tip cells with the UNC5B ligand Netrin-1 leads to filopodial retraction, an effect that is lost in Unc5b mutants. UNC5B thus functions as a repulsive guidance receptor controlling morphogenesis of the vascular system. The capacity to direct blood vessel growth may have important therapeutic implications for the anti-angiogenic treatment of solid tumors. We are currently studying a novel UNC5B ligand that we have identified.
My group has also shown the selective expression of the VEGF co-receptors Neuropilin (Nrp) in EC of arteries (Nrp1) and of veins/lymphatics (Nrp2). Homozygous Nrp2 mutant embryos exhibit selective defects in the formation of lymphatic vessels, while their veins and arteries form normally. Lymphatic vessels are aberrantly positioned and enlarge rather than form branches. Antibodies blocking VEGF-C binding to Nrp2 and Nrp2-Vegfr3 double heterozygous mice reproduce these defects, indicating that binding of VEGF to Nrp2 and signal transduction through VEGFR3 mediate lymphatic vessel sprouting. We have generated transgenic mice expressing GFP in their lymphatic vessels to analyze live lymphatic vessel development in normal and mutant animals by multiphoton imaging.
Vascular endothelial growth factors including VEGF-C also regulate development of certain neuronal cell types. We are using targeted inactivation of Vegfr3 in neural cells to understand VEGF-C/VEGFR-3 signaling in the nervous system.Functional analysis of novel tip-cell enriched genes
UNC5B signaling and function
NRPs in the vascular and lymphatic system
Real-time imaging of lymphatic vessel development
Role of vascular growth factors in the nervous system
Coauthors
Research Interests
Blood Vessels; Cardiology; Central Nervous System; Endothelium, Vascular; Physiology
Research Image
8634621
Selected Publications
- Abstract WMP110: Vascular Endothelial Growth Factor C Confers Neuroprotection And Ameliorates Ischemic Stroke OutcomesSimoes Braga Boisserand L, Lee S, Bouchart J, Medeiros Geraldo L, Sanganahalli B, Eichmann A, Sansing L, Benveniste H, Hyder F, Thomas J. Abstract WMP110: Vascular Endothelial Growth Factor C Confers Neuroprotection And Ameliorates Ischemic Stroke Outcomes Stroke 2023, 54: awmp110-awmp110. DOI: 10.1161/str.54.suppl_1.wmp110.
- Mitochondrial dysfunction induces ALK5-SMAD2-mediated hypovascularization and arteriovenous malformations in mouse retinasZhang H, Li B, Huang Q, López-Giráldez F, Tanaka Y, Lin Q, Mehta S, Wang G, Graham M, Liu X, Park I, Eichmann A, Min W, Zhou J. Mitochondrial dysfunction induces ALK5-SMAD2-mediated hypovascularization and arteriovenous malformations in mouse retinas Nature Communications 2022, 13: 7637. PMID: 36496409, PMCID: PMC9741628, DOI: 10.1038/s41467-022-35262-w.
- Chapter 22 Sprouting angiogenesis in vascular and lymphatic developmentEichmann A, Li J. Chapter 22 Sprouting angiogenesis in vascular and lymphatic development 2022, 265-273. DOI: 10.1016/b978-0-12-822546-2.00006-x.
- Stop the Divide and Build Coronary ArteriesZarkada G, Eichmann A. Stop the Divide and Build Coronary Arteries Developmental Cell 2021, 56: 255-256. PMID: 33561420, DOI: 10.1016/j.devcel.2021.01.008.
- Neuropilins in Lymphatic Development and FunctionHan J, Zarkada G, Eichmann A. Neuropilins in Lymphatic Development and Function 2017, 109-124. DOI: 10.1007/978-3-319-48824-0_7.
- Emergence of Endothelial Cells During Vascular DevelopmentEichmann A, Pardanaud L. Emergence of Endothelial Cells During Vascular Development 2014, 3-23. DOI: 10.1007/978-2-8178-0466-8_1.
- Erratum to: Delta-like 4 inhibits choroidal neovascularization despite opposing effects on vascular endothelium and macrophagesCamelo S, Raoul W, Lavalette S, Calippe B, Cristofaro B, Levy O, Houssier M, Sulpice E, Jonet L, Klein C, Devevre E, Thuret G, Duarte A, Eichmann A, Leconte L, Guillonneau X, Sennlaub F. Erratum to: Delta-like 4 inhibits choroidal neovascularization despite opposing effects on vascular endothelium and macrophages Angiogenesis 2012, 16: 479-480. PMCID: PMC4079527, DOI: 10.1007/s10456-012-9331-8.
- Molecular parallels between neural and vascular developmentEichmann A. Molecular parallels between neural and vascular development Vascular Pharmacology 2012, 56: 308. DOI: 10.1016/j.vph.2011.08.010.
- ALK1 Signaling Inhibits Angiogenesis by Cooperating with the Notch PathwayLarrivée B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, Simons M, Eichmann A. ALK1 Signaling Inhibits Angiogenesis by Cooperating with the Notch Pathway Developmental Cell 2012, 22: 489-500. PMID: 22421041, PMCID: PMC4047762, DOI: 10.1016/j.devcel.2012.02.005.
- Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesisCalvo CF, Fontaine RH, Soueid J, Tammela T, Makinen T, Alfaro-Cervello C, Bonnaud F, Miguez A, Benhaim L, Xu Y, Barallobre MJ, Moutkine I, Lyytikkä J, Tatlisumak T, Pytowski B, Zalc B, Richardson W, Kessaris N, Garcia-Verdugo JM, Alitalo K, Eichmann A, Thomas JL. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis Genes & Development 2011, 25: 831-844. PMID: 21498572, PMCID: PMC3078708, DOI: 10.1101/gad.615311.
- Robo4 Maintains Vessel Integrity and Inhibits Angiogenesis by Interacting with UNC5BKoch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J, Pibouin-Fragner L, Bouvrée K, Stawicki S, Nicholes K, Rathore N, Scales SJ, Luis E, del Toro R, Freitas C, Bréant C, Michaud A, Corvol P, Thomas JL, Wu Y, Peale F, Watts RJ, Tessier-Lavigne M, Bagri A, Eichmann A. Robo4 Maintains Vessel Integrity and Inhibits Angiogenesis by Interacting with UNC5B Developmental Cell 2011, 20: 33-46. PMID: 21238923, DOI: 10.1016/j.devcel.2010.12.001.
- Regulation of blood vessel patterning and guidanceEichmann A. Regulation of blood vessel patterning and guidance The FASEB Journal 2010, 24: 62.3-62.3. DOI: 10.1096/fasebj.24.1_supplement.62.3.
- Neuropilin-2 mediates VEGF-C–induced lymphatic sprouting together with VEGFR3Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivée B, del Toro R, Suchting S, Medvinsky A, Silva J, Yang J, Thomas J, Koch A, Alitalo K, Eichmann A, Bagri A. Neuropilin-2 mediates VEGF-C–induced lymphatic sprouting together with VEGFR3 Journal Of Experimental Medicine 2010, 207: i1-i1. DOI: 10.1084/jem2071oia1.
- Separating genetic and hemodynamic defects in neuropilin 1Jones E, Yuan L, Breant C, Watts R, Eichmann A. Separating genetic and hemodynamic defects in neuropilin 1 The FASEB Journal 2009, 23: 311.1-311.1. DOI: 10.1096/fasebj.23.1_supplement.311.1.
- Regulation of blood vessel patterning and branchingEichmann A. Regulation of blood vessel patterning and branching The FASEB Journal 2008, 22: 391.2-391.2. DOI: 10.1096/fasebj.22.1_supplement.391.2.
- Separating Genetic and Hemodynamics Effects In Nrp1 Knockout EmbryosJones E, Yuan L, Breant C, Watts R, Eichmann A. Separating Genetic and Hemodynamics Effects In Nrp1 Knockout Embryos The FASEB Journal 2008, 22: 1143.2-1143.2. DOI: 10.1096/fasebj.22.1_supplement.1143.2.
- Vasculogenesis and Angiogenesis in DevelopmentEichmann A, Bouvrée K, Pardanaud L. Vasculogenesis and Angiogenesis in Development 2008, 31-45. DOI: 10.1007/978-3-540-33177-3_2.
- The Notch ligand Delta‐like 4 (Dll4) negatively regulates endothelial tip cell formation and vessel branchingSuchting S, Freitas C, del Toro R, Noble F, Benedito R, Breant C, Duarte A, Eichmann A. The Notch ligand Delta‐like 4 (Dll4) negatively regulates endothelial tip cell formation and vessel branching The FASEB Journal 2007, 21: a15-a15. DOI: 10.1096/fasebj.21.5.a15-a.
- Activation of the UNC5B receptor by Netrin‐1 inhibits neovascularizationLarrivée B, Freitas C, Trombe M, Lv X, DeLafarge B, Yuan L, Bouvrée K, Breant C, Bono F, Autiero M, Claes F, Carmeliet P, Tessier‐Lavigne M, Eichmann A. Activation of the UNC5B receptor by Netrin‐1 inhibits neovascularization The FASEB Journal 2007, 21: a746-a746. DOI: 10.1096/fasebj.21.6.a746-b.
- Biomechanical Gene Activation During Cardiovascular DevelopmentJones E, Le Noble F, Yuan L, Eichmann A. Biomechanical Gene Activation During Cardiovascular Development The FASEB Journal 2007, 21: a201-a201. DOI: 10.1096/fasebj.21.5.a201-a.
- Molecular mechanisms controling vessel branching and morphogenesisEichmann A. Molecular mechanisms controling vessel branching and morphogenesis The FASEB Journal 2007, 21: a197-a197. DOI: 10.1096/fasebj.21.5.a197-b.
- The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branchingSuchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 3225-3230. PMID: 17296941, PMCID: PMC1805603, DOI: 10.1073/pnas.0611177104.
- Physical forces control vascular network remodeling in the embryoJones L, Fleury V, Eichmann A, le Noble F. Physical forces control vascular network remodeling in the embryo Journal Of Biomechanics 2006, 39: s329. DOI: 10.1016/s0021-9290(06)84297-1.
- Control of arterial branching morphogenesis in embryogenesis: go with the flowle Noble F, Fleury V, Pries A, Corvol P, Eichmann A, Reneman R. Control of arterial branching morphogenesis in embryogenesis: go with the flow Cardiovascular Research 2005, 65: 619-628. PMID: 15664388, DOI: 10.1016/j.cardiores.2004.09.018.
- The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular systemLu X, le Noble F, Yuan L, Jiang Q, de Lafarge B, Sugiyama D, Bréant C, Claes F, De Smet F, Thomas JL, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system Nature 2004, 432: 179-186. PMID: 15510105, DOI: 10.1038/nature03080.
- A model for gene therapy of human hereditary lymphedemaKarkkainen M, Saaristo A, Jussila L, Karila K, Lawrence E, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen M, Ylä-Herttuala S, Finegold D, Ferrell R, Alitalo K. A model for gene therapy of human hereditary lymphedema Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 12677-12682. PMID: 11592985, PMCID: PMC60113, DOI: 10.1073/pnas.221449198.
- Development of the avian lymphatic systemWilting J, Papoutsi M, Othman‐Hassan K, Rodriguez‐Niedenführ M, Pröls F, Tomarev S, Eichmann A. Development of the avian lymphatic system Microscopy Research And Technique 2001, 55: 81-91. PMID: 11596153, DOI: 10.1002/jemt.1159.
- Hemangioblast Commitment in the Avian Allantois: Cellular and Molecular AspectsCaprioli A, Minko K, Drevon C, Eichmann A, Dieterlen-Lièvre F, Jaffredo T. Hemangioblast Commitment in the Avian Allantois: Cellular and Molecular Aspects Developmental Biology 2001, 238: 64-78. PMID: 11783994, DOI: 10.1006/dbio.2001.0362.
- Endogenous origin of the lymphatics in the avian chorioallantoic membranePapoutsi M, Tomarev S, Eichmann A, Pröls F, Christ B, Wilting J. Endogenous origin of the lymphatics in the avian chorioallantoic membrane Developmental Dynamics 2001, 222: 238-251. PMID: 11668601, DOI: 10.1002/dvdy.1187.
- Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo.Moyon D, Pardanaud L, Yuan L, Bréant C, Eichmann A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 2001, 128: 3359-70. PMID: 11546752, DOI: 10.1242/dev.128.17.3359.
- Selective expression of angiopoietin 1 and 2 in mesenchymal cells surrounding veins and arteries of the avian embryoMoyon D, Pardanaud L, Yuan L, Bréant C, Eichmann A. Selective expression of angiopoietin 1 and 2 in mesenchymal cells surrounding veins and arteries of the avian embryo Cells And Development 2001, 106: 133-136. PMID: 11472842, DOI: 10.1016/s0925-4773(01)00425-7.
- L'embryologie des vaisseaux.Pardanaud L, Moyon D, Eichmann A. L'embryologie des vaisseaux. Médecine/sciences 2001, 17: 543. DOI: 10.4267/10608/1966.
- Developmental expression of Pim kinases suggests functions also outside of the hematopoietic systemEichmann A, Yuan L, Bréant C, Alitalo K, Koskinen P. Developmental expression of Pim kinases suggests functions also outside of the hematopoietic system Oncogene 2000, 19: 1215-1224. PMID: 10713710, DOI: 10.1038/sj.onc.1203355.
- Hemangioblastic Precursors in the Avian EmbryoEichmann A, Corbel C, Pardanaud L, Bréant C, Moyon D, Yuan L. Hemangioblastic Precursors in the Avian Embryo 2000, 251: 83-90. PMID: 11036762, DOI: 10.1007/978-3-642-57276-0_11.
- Endothelial cell precursors in the avian embryo.Eichmann A, Corbel C. Endothelial cell precursors in the avian embryo. Current Research In Translational Medicine 1999, 47: 307-13. PMID: 10372398.
- Récepteurs et développement des cellules endothéliales et hématopoïétiquesEichmann A, Moyon D, Corbel C. Récepteurs et développement des cellules endothéliales et hématopoïétiques Biologie Aujourd Hui 1999, 193: 155-157. PMID: 10451349, DOI: 10.1051/jbio/1999193020155.
- Segregation of the embryonic vascular and hemopoietic systemsEichmann A, Corbel C, Le Douarin N. Segregation of the embryonic vascular and hemopoietic systems Biochemistry And Cell Biology 1998, 76: 939-946. PMID: 10392707, DOI: 10.1139/o98-106.
- Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny.Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lievre F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 1998, 125: 4575-83. PMID: 9778515, DOI: 10.1242/dev.125.22.4575.
- Paracrine and autocrine regulation of vascular endothelial growth factor during tissue differentiation in the quailAitkenhead M, Christ B, Eichmann A, Feucht M, Wilson D, Wilting J. Paracrine and autocrine regulation of vascular endothelial growth factor during tissue differentiation in the quail Developmental Dynamics 1998, 212: 1-13. PMID: 9603419, DOI: 10.1002/(sici)1097-0177(199805)212:1<1::aid-aja1>3.0.co;2-l.
- Avian VEGF-C: cloning, embryonic expression pattern and stimulation of the differentiation of VEGFR2-expressing endothelial cell precursors.Eichmann A, Corbel C, Jaffredo T, Breant C, Joukov V, Kumar V, Alitalo K, le Douarin N. Avian VEGF-C: cloning, embryonic expression pattern and stimulation of the differentiation of VEGFR2-expressing endothelial cell precursors. Development 1998, 125: 743-52. PMID: 9435294, DOI: 10.1242/dev.125.4.743.
- The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutantEichmann A, Grapin-Botton A, Kelly L, Graf T, Le Douarin N, Sieweke M. The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant Cells And Development 1997, 65: 111-122. PMID: 9256349, DOI: 10.1016/s0925-4773(97)00063-4.
- Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2Eichmann A, Corbel C, Nataf V, Vaigot P, Bréant C, Le Douarin N. Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2 Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 5141-5146. PMID: 9144204, PMCID: PMC24645, DOI: 10.1073/pnas.94.10.5141.
- Expression of the avian VEGF receptor homologues Quek1 and Quek2 in blood-vascular and lymphatic endothelial and non-endothelial cells during quail embryonic developmentWilting J, Eichmann A, Christ B. Expression of the avian VEGF receptor homologues Quek1 and Quek2 in blood-vascular and lymphatic endothelial and non-endothelial cells during quail embryonic development Cell And Tissue Research 1997, 288: 207-223. PMID: 9082957, DOI: 10.1007/s004410050807.
- Endothelin-B receptor is expressed by neural crest cells in the avian embryo.Nataf V, Lecoin L, Eichmann A, Le Douarin N. Endothelin-B receptor is expressed by neural crest cells in the avian embryo. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 9645-9650. PMID: 8790384, PMCID: PMC38482, DOI: 10.1073/pnas.93.18.9645.
- Molecular cloning of Quek 1 and 2, two quail vascular endothelial growth factor (VEGF) receptor-like moleculesEichmann A, Marcelle C, Bréant C, Le Douarin N. Molecular cloning of Quek 1 and 2, two quail vascular endothelial growth factor (VEGF) receptor-like molecules Gene 1996, 174: 3-8. PMID: 8863722, DOI: 10.1016/0378-1119(96)00159-x.
- VEGF121Induces Proliferation of Vascular Endothelial Cells and Expression offlk-1without Affecting Lymphatic Vessels of the Chorioallantoic MembraneWilting J, Birkenhäger R, Eichmann A, Kurz H, Martiny-Baron G, Marmé D, McCarthy J, Christ B, Weich H. VEGF121Induces Proliferation of Vascular Endothelial Cells and Expression offlk-1without Affecting Lymphatic Vessels of the Chorioallantoic Membrane Developmental Biology 1996, 176: 76-85. PMID: 8654896, DOI: 10.1006/dbio.1996.9993.
- The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vesselsCouly G, Coltey P, Eichmann A, Le Douarin N. The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels Cells And Development 1995, 53: 97-112. PMID: 8555115, DOI: 10.1016/0925-4773(95)00428-9.
- Distinct developmental expression of a new avian fibroblast growth factor receptor.Marcelle C, Eichmann A, Halevy O, Breant C, Le Douarin N. Distinct developmental expression of a new avian fibroblast growth factor receptor. Development 1994, 120: 683-94. PMID: 8162862, DOI: 10.1242/dev.120.3.683.
- Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic developmentEichmann A, Marcelle C, Bréant C, Le Douarin N. Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development Cells And Development 1993, 42: 33-48. PMID: 8396413, DOI: 10.1016/0925-4773(93)90096-g.
- Molecular cloning of a family of protein kinase genes expressed in the avian embryo.Marcelle C, Eichmann A. Molecular cloning of a family of protein kinase genes expressed in the avian embryo. Oncogene 1992, 7: 2479-87. PMID: 1281306.
- ODieterlen-Lievre F, le Douarin N, Eichmann A. O 1990, 201-209. DOI: 10.1007/978-3-642-57063-6_15.