Carlos Fernandez-Hernando, PhD
Research & Publications
Biography
News
Research Summary
We combine cell biology, genetics and mouse models to study lipid metabolism and cardiovascular related disorders. In particular, our research program aims to:
1. Identifying novel mechanisms by which cholesterol metabolism is regulated.
2. Assessing the contribution of non-coding RNA in regulating lipid metabolism.
3. Developing novel non-coding RNA based therapies for treating cardiovascular disorders.
Specialized Terms: Cholesterol homeostasis; Lipoprotein metabolism; Post-transcriptional regulation; microRNAs; Atherosclerosis; RNAi screening
Extensive Research Description
Our research aims to identify and characterize novel mechanisms by which cholesterol and lipoprotein metabolism is regulated. To date, most lipid and lipoprotein research has focused on alterations of protein coding genes, whereas the functions of non-coding RNAs remain largely unknown. Particular efforts are focused on microRNAs (miRNAs), a novel class of small non-coding RNAs that mediate port-transcriptional gene silencing. Using mouse models and cell culture studies, we will elucidate the molecular basis of the miRNA functions in regulating lipid metabolism and explore the potential of miRNAs as therapetic targets.
miRNAs have emerged as critical regulators of gene expression at the posttranscriptional level. miRNAs typically control the expression of their target genes by imperfect base pairing to the 3’ untranslated regions (3’UTR) of messenger RNAs (mRNAs) thereby inducing repression of the target mRNA. Bioinformatic predictions and experimental approaches indicate that a single miRNA may target more than a hundred mRNAs. Indeed, human miRNAs are predicted to control the activity of more than 60% of all protein-coding genes. This class of short (22 nucleotides) noncoding RNA molecules has been shown to participate in almost every cellular process investigated so far, and their dysregulation is observed in, and might underlie, different human pathologies including cancer, heart disease, and neurodegeneration. Very recently, we have demonstrated that miR-33, an intronic miRNA located within the SREBP-2 gene, plays important roles in the homeostatic regulation of cholesterol metabolism. miR-33 inhibits the expression of the ATP-binding cassette (ABC) transporter, ABCA1, thereby attenuating both cholesterol efflux to apoA1 and high-density lipoprotein (HDL) biogenesis. Conversely, silencing of miR-33 in vivo increased hepatic ABCA1 and plasma HDL. Because plasma HDL levels show a strong inverse correlation with atherosclerotic vascular disease, there has been intense interest in therapeutically targeting HDL and macrophage cholesterol efflux pathways. Our study suggests that antagonists of endogenous miR-33 may be a useful therapeutic strategy for enhancing ABCA1 expression and raising HDL levels in vivo. In addition, our recent preliminary data suggest that miR-33 also coordinates genes regulating fatty acid metabolism and insulin signaling. Therefore, we plan to continue investigating the potential relevance of miR-33 expression in metabolic syndrome. Moreover, we are working with other miRNAs involved in the regulation of cellular cholesterol homeostasis, and depending on the results, would pursue the most promising candidates in more detail.
A second major project is to characterize new genes involved in the regulation of cholesterol. A tightly controlled-but only partially characterized-network of cellular signaling and lipid transfer systems orchestrates the functional compartmentalization of cholesterol within and between tissues at the whole body level. Increased understanding of these processes and their integration at the organ systems level provides fundamental insights into the physiology of cholesterol metabolism. However several issues await further studies. For the most sterol transport processes, only a limited number of proteins that are involved have been identified and very little is known about cholesterol trafficking in many physiologically relevant cell types, such us hepatocytes, enterocytes or cells of the central nervous system. Future work will focus on determining the molecular mechanisms involved in the cholesterol metabolism in mammalian cells using functional genomic screens. Our current studies aim to identify new genes regulating low-density lipoprotein receptor activity and trafficking in human hepatic cell lines using a genome-wide RNA interference (RNAi) screens. Besides increasing our insights into the physiology of cholesterol trafficking, the information obtained should help to develop improved strategies for management of cholesterol-related pathologies.
- Role of Caveolin-1 in regulating lipoprotein metabolism and cardiovascular disorders.
- Regulation of lipid metabolism by microRNAs
- Identification of novel genes involved in the regulation cholesterol metabolism using genome-wide siRNAs screens
- Regulation of sterol metabolism by inflammation
Coauthors
Research Interests
Pathology; Atherosclerosis
Selected Publications
- Genetic or therapeutic neutralization of ALK1 reduces LDL transcytosis and atherosclerosis in miceLee S, Schleer H, Park H, Jang E, Boyer M, Tao B, Gamez-Mendez A, Singh A, Folta-Stogniew E, Zhang X, Qin L, Xiao X, Xu L, Zhang J, Hu X, Pashos E, Tellides G, Shaul P, Lee W, Fernandez-Hernando C, Eichmann A, Sessa W. Genetic or therapeutic neutralization of ALK1 reduces LDL transcytosis and atherosclerosis in mice. Nature Cardiovascular Research 2023, 2: 438-448. DOI: 10.1038/s44161-023-00266-2.
- microRNA-33 deficiency in macrophages enhances autophagy, improves mitochondrial homeostasis, and protects against lung fibrosisAhangari F, Price N, Malik S, Chioccioli M, Bärnthaler T, Adams T, Kim J, Pradeep S, Ding S, Cosme C, Rose K, McDonough J, Aurelien N, Ibarra G, Omote N, Schupp J, DeIuliis G, Nunez J, Sharma L, Ryu C, Dela Cruz C, Liu X, Prasse A, Rosas I, Bahal R, Fernandez-Hernando C, Kaminski N. microRNA-33 deficiency in macrophages enhances autophagy, improves mitochondrial homeostasis, and protects against lung fibrosis. JCI Insight 2023, 8: e158100. PMID: 36626225, PMCID: PMC9977502, DOI: 10.1172/jci.insight.158100.
- The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaquesKabir I, Zhang X, Dave J, Chakraborty R, Qu R, Chandran R, Ntokou A, Gallardo-Vara E, Aryal B, Rotllan N, Garcia-Milian R, Hwa J, Kluger Y, Martin K, Fernández-Hernando C, Greif D. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. Nature Aging 2023, 1-18. DOI: 10.1038/s43587-022-00342-5.
- The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaquesKabir I, Zhang X, Dave J, Chakraborty R, Qu R, Chandran R, Ntokou A, Gallardo-Vara E, Aryal B, Rotllan N, Garcia-Milian R, Hwa J, Kluger Y, Martin K, Fernández-Hernando C, Greif D. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. Nature Aging 2023, 3: 64-81. PMID: 36743663, PMCID: PMC9894379, DOI: 10.1038/s43587-022-00342-5.
- Macrophage-Derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion RemodelingCanfrán-Duque A, Rotllan N, Zhang X, Andrés-Blasco I, Thompson B, Sun J, Price N, Fernández-Fuertes M, Fowler J, Gómez-Coronado D, Sessa W, Giannarelli C, Schneider R, Tellides G, McDonald J, Fernández-Hernando C, Suárez Y. Macrophage-Derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion Remodeling. Circulation 2022, 147: 388-408. PMID: 36416142, PMCID: PMC9892282, DOI: 10.1161/circulationaha.122.059062.
- Antagonism of miR-148a attenuates the progression of atherosclerosis in APOBTGApobec-/-Ldlr+/- miceRotllan N, Zhang X, Canfrán-Duque A, Goedeke L, Griñán R, Ramírez C, Suárez Y, Fernández-Hernando C. Antagonism of miR-148a attenuates the progression of atherosclerosis in APOBTGApobec-/-Ldlr+/- mice. Atherosclerosis 2022, 355: 25. DOI: 10.1016/j.atherosclerosis.2022.06.068.
- Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosisZhang X, McDonald JG, Aryal B, Canfrán-Duque A, Goldberg EL, Araldi E, Ding W, Fan Y, Thompson BM, Singh AK, Li Q, Tellides G, Ordovás-Montanes J, García Milian R, Dixit VD, Ikonen E, Suárez Y, Fernández-Hernando C. Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2107682118. PMID: 34782454, PMCID: PMC8617522, DOI: 10.1073/pnas.2107682118.
- MMAB promotes negative feedback control of cholesterol homeostasisGoedeke L, Canfrán-Duque A, Rotllan N, Chaube B, Thompson BM, Lee RG, Cline GW, McDonald JG, Shulman GI, Lasunción MA, Suárez Y, Fernández-Hernando C. MMAB promotes negative feedback control of cholesterol homeostasis. Nature Communications 2021, 12: 6448. PMID: 34750386, PMCID: PMC8575900, DOI: 10.1038/s41467-021-26787-7.
- PCSK9 Activity Is Potentiated Through HDL BindingBurnap SA, Sattler K, Pechlaner R, Duregotti E, Lu R, Theofilatos K, Takov K, Heusch G, Tsimikas S, Fernández-Hernando C, Berry SE, Hall WL, Notdurfter M, Rungger G, Paulweber B, Willeit J, Kiechl S, Levkau B, Mayr M. PCSK9 Activity Is Potentiated Through HDL Binding. Circulation Research 2021, 129: 1039-1053. PMID: 34601896, PMCID: PMC8579991, DOI: 10.1161/circresaha.121.319272.
- Hepatocyte-specific suppression of ANGPTL4 improves obesity-associated diabetes and mitigates atherosclerosis in miceSingh AK, Chaube B, Zhang X, Sun J, Citrin KM, Canfrán-Duque A, Aryal B, Rotllan N, Varela L, Lee RG, Horvath TL, Price N, Suárez Y, Fernandez-Hernando C. Hepatocyte-specific suppression of ANGPTL4 improves obesity-associated diabetes and mitigates atherosclerosis in mice. Journal Of Clinical Investigation 2021, 131 PMID: 34255741, PMCID: PMC8409581, DOI: 10.1172/jci140989.
- HDL compartmentalisation regulates PCSK9 activityBurnap S, Sattler K, Pechlaner R, Theofilatos K, Takov K, Heusch G, Tsimikas S, Fernández-Hernando C, Berry S, Hall W, Notdurfter M, Rungger G, Willeit J, Kiechl S, Levkau B, Mayr M. HDL compartmentalisation regulates PCSK9 activity. Atherosclerosis 2021, 331: e39. DOI: 10.1016/j.atherosclerosis.2021.06.111.
- Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes MellitusSrivastava SP, Zhou H, Setia O, Dardik A, Fernandez‐Hernando C, Goodwin J. Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus. Journal Of The American Heart Association 2021, 10: e019437. PMID: 34308664, PMCID: PMC8475689, DOI: 10.1161/jaha.120.019437.
- Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in miceRyu S, Shchukina I, Youm YH, Qing H, Hilliard B, Dlugos T, Zhang X, Yasumoto Y, Booth CJ, Fernández-Hernando C, Suárez Y, Khanna K, Horvath TL, Dietrich MO, Artyomov M, Wang A, Dixit VD. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. ELife 2021, 10: e66522. PMID: 34151773, PMCID: PMC8245129, DOI: 10.7554/elife.66522.
- miR‐33 in cardiometabolic diseases: lessons learned from novel animal models and approachesPrice NL, Goedeke L, Suárez Y, Fernández‐Hernando C. miR‐33 in cardiometabolic diseases: lessons learned from novel animal models and approaches. EMBO Molecular Medicine 2021, 13: e12606. PMID: 33938628, PMCID: PMC8103095, DOI: 10.15252/emmm.202012606.
- Macrophage Specific Regulatory Role of miR-33 in Pulmonary FibrosisAhangari F, Chioccioli M, Malik S, Baernthaler T, Price N, Ding S, Rose K, Mcdonough J, Omote N, Schupp J, Adams T, Sharma L, DeIuliis G, Dela Cruz C, Prasse A, Bahal R, Fernandez-Hernando C, Kaminski N. Macrophage Specific Regulatory Role of miR-33 in Pulmonary Fibrosis. 2021, a4452-a4452. DOI: 10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4452.
- MicroRNA regulation of cholesterol metabolismCitrin KM, Fernández‐Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Annals Of The New York Academy Of Sciences 2021, 1495: 55-77. PMID: 33521946, PMCID: PMC8938903, DOI: 10.1111/nyas.14566.
- Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosisPrice NL, Zhang X, Fernández-Tussy P, Singh AK, Burnap SA, Rotllan N, Goedeke L, Sun J, Canfrán-Duque A, Aryal B, Mayr M, Suárez Y, Fernández-Hernando C. Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2006478118. PMID: 33495342, PMCID: PMC7865172, DOI: 10.1073/pnas.2006478118.
- Uncovering the Specific Functions of miR-33 in Regulation of Feeding and Cardiometabolic Diseases Linked to AgingPrice N, Zhang X, Fernandez-Tussy P, de Cabo R, Fernandez-Hernando C. Uncovering the Specific Functions of miR-33 in Regulation of Feeding and Cardiometabolic Diseases Linked to Aging. Innovation In Aging 2020, 4: 128-128. PMCID: PMC7741365, DOI: 10.1093/geroni/igaa057.421.
- The pHLIP system as a vehicle for microRNAs in the kidneyMiguel V, Rey C, Aceña J, Maqueda F, Fernández-Hernando C, Rodríguez-Puyol D, Vaquero J, Lamas S. The pHLIP system as a vehicle for microRNAs in the kidney. Nefrología (English Edition) 2020, 40: 491-498. DOI: 10.1016/j.nefroe.2020.05.003.
- 459-P: Liver-Targeted Mitochondrial Uncoupling by CRMP Improves Whole-Body Insulin Sensitivity and Attenuates Atherosclerosis in A LDLR-/- Mouse Model of Metabolic SyndromeGOEDEKE L, ROTLLAN N, TOUSSAINT K, NASIRI A, ZHANG X, LEE J, ZHANG X, FERNÁNDEZ-HERNANDO C, SHULMAN G. 459-P: Liver-Targeted Mitochondrial Uncoupling by CRMP Improves Whole-Body Insulin Sensitivity and Attenuates Atherosclerosis in A LDLR-/- Mouse Model of Metabolic Syndrome. Diabetes 2020, 69 DOI: 10.2337/db20-459-p.
- Endothelial TGF-β signalling drives vascular inflammation and atherosclerosisChen PY, Qin L, Li G, Wang Z, Dahlman JE, Malagon-Lopez J, Gujja S, Cilfone N, Kauffman K, Sun L, Sun H, Zhang X, Aryal B, Canfran-Duque A, Liu R, Kusters P, Sehgal A, Jiao Y, Anderson D, Gulcher J, Fernandez-Hernando C, Lutgens E, Schwartz M, Pober J, Chittenden T, Tellides G, Simons M. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism 2019, 1: 912-926. PMID: 31572976, PMCID: PMC6767930, DOI: 10.1038/s42255-019-0102-3.
- B Cell Uptake Of Modified Ldl Results In Modulation Of B Cell Activation And FunctionsWassem T, Keeter C, Moriarty A, Fernandez-Hernando C, Galkina E. B Cell Uptake Of Modified Ldl Results In Modulation Of B Cell Activation And Functions. Atherosclerosis 2019, 287: e17. DOI: 10.1016/j.atherosclerosis.2019.06.047.
- Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase ActivationRamírez CM, Zhang X, Bandyopadhyay C, Rotllan N, Sugiyama MG, Aryal B, Liu X, He S, Kraehling JR, Ulrich V, Lin CS, Velazquez H, Lasunción MA, Li G, Suárez Y, Tellides G, Swirski FK, Lee WL, Schwartz MA, Sessa WC, Fernández-Hernando C. Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation 2019, 140: 225-239. PMID: 31154825, PMCID: PMC6778687, DOI: 10.1161/circulationaha.118.038571.
- Profibrotic Effects of Mir-33 - Role of Autophagy and Mitochondrial Homeostasis in Macrophages, and Therapeutic ImplicationsAhangari F, Price N, Schupp J, Rose K, Ibarra G, DeIuliis G, Xylourgidis N, Prasse A, Fernandez-Hernando C, Kaminski N. Profibrotic Effects of Mir-33 - Role of Autophagy and Mitochondrial Homeostasis in Macrophages, and Therapeutic Implications. 2019, a7222-a7222. DOI: 10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a7222.
- Specific Disruption of Abca1 Targeting Largely Mimics the Effects of miR-33 Knockout on Macrophage Cholesterol Efflux and Atherosclerotic Plaque DevelopmentPrice NL, Rotllan N, Zhang X, Canfrán-Duque A, Nottoli T, Suarez Y, Fernández-Hernando C. Specific Disruption of Abca1 Targeting Largely Mimics the Effects of miR-33 Knockout on Macrophage Cholesterol Efflux and Atherosclerotic Plaque Development. Circulation Research 2019, 124: 874-880. PMID: 30707082, PMCID: PMC6417928, DOI: 10.1161/circresaha.118.314415.
- Abstract 300: MicroRNA-21 Affects Platelets and Their Releasate: A Novel Mechanism for the Anti-Fibrotic Effects of MicroRNA-21 InhibitionBarwari T, Eminaga S, Lu R, Armstrong P, Schulte C, Lynch M, Chan M, Barallobre-Barreiro J, Yin X, Pechlaner R, Langley S, Sahraei M, Fernández-Fuertes M, Zampetaki A, Santer P, Warner T, Kiechl S, Willeit J, Fernández-Hernando C, Suárez Y, Shah A, Mayr M. Abstract 300: MicroRNA-21 Affects Platelets and Their Releasate: A Novel Mechanism for the Anti-Fibrotic Effects of MicroRNA-21 Inhibition. Circulation Research 2018, 123 DOI: 10.1161/res.123.suppl_1.300.
- Biophysics as a tool for a precise diagnosis and nanotheranostics in cardiovascular diseaseBelloso-uribe K, Benito-Vicente A, Galicia U, Jebary S, Etxebarria A, Ostolaza H, Fernández-Hernando C, Martín C. Biophysics as a tool for a precise diagnosis and nanotheranostics in cardiovascular disease. Atherosclerosis 2018, 275: e153. DOI: 10.1016/j.atherosclerosis.2018.06.456.
- AntimiR-148a Treatment Reduces Atherosclerotic Plaque Formation in Ldlr+/-Apobec1-/-ApoB100TG MiceRotllan N, Zhang X, Canfran-Duque A, Goedeke L, Ramirez C, Fernandez-Hernando C. AntimiR-148a Treatment Reduces Atherosclerotic Plaque Formation in Ldlr+/-Apobec1-/-ApoB100TG Mice. Atherosclerosis Plus 2018, 32: 153. DOI: 10.1016/j.atherosclerosissup.2018.04.466.
- Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesisAryal B, Singh AK, Zhang X, Varela L, Rotllan N, Goedeke L, Chaube B, Camporez JP, Vatner DF, Horvath TL, Shulman GI, Suárez Y, Fernández-Hernando C. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight 2018, 3: e97918. PMID: 29563332, PMCID: PMC5926923, DOI: 10.1172/jci.insight.97918.
- Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin ResistancePrice NL, Singh AK, Rotllan N, Goedeke L, Wing A, Canfrán-Duque A, Diaz-Ruiz A, Araldi E, Baldán Á, Camporez JP, Suárez Y, Rodeheffer MS, Shulman GI, de Cabo R, Fernández-Hernando C. Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance. Cell Reports 2018, 22: 2133-2145. PMID: 29466739, PMCID: PMC5860817, DOI: 10.1016/j.celrep.2018.01.074.
- Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of AtherosclerosisPrice NL, Rotllan N, Canfrán-Duque A, Zhang X, Pati P, Arias N, Moen J, Mayr M, Ford DA, Baldán Á, Suárez Y, Fernández-Hernando C. Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis. Cell Reports 2017, 21: 1317-1330. PMID: 29091769, PMCID: PMC5687841, DOI: 10.1016/j.celrep.2017.10.023.
- Macrophage deficiency of miR‐21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesisCanfrán‐Duque A, Rotllan N, Zhang X, Fernández‐Fuertes M, Ramírez‐Hidalgo C, Araldi E, Daimiel L, Busto R, Fernández‐Hernando C, Suárez Y. Macrophage deficiency of miR‐21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Molecular Medicine 2017, 9: 1244-1262. PMID: 28674080, PMCID: PMC5582411, DOI: 10.15252/emmm.201607492.
- Lanosterol Modulates TLR4-Mediated Innate Immune Responses in MacrophagesAraldi E, Fernández-Fuertes M, Canfrán-Duque A, Tang W, Cline GW, Madrigal-Matute J, Pober JS, Lasunción MA, Wu D, Fernández-Hernando C, Suárez Y. Lanosterol Modulates TLR4-Mediated Innate Immune Responses in Macrophages. Cell Reports 2017, 19: 2743-2755. PMID: 28658622, PMCID: PMC5553565, DOI: 10.1016/j.celrep.2017.05.093.
- Noncoding RNAs in Cholesterol Metabolism and AtherosclerosisPrice N, Fernández-Hernando C. Noncoding RNAs in Cholesterol Metabolism and Atherosclerosis. 2017, 2: 21-37. DOI: 10.1007/978-3-319-52945-5_2.
- Engineered microvasculature in PDMS networks using endothelial cells derived from human induced pluripotent stem cellsSivarapatna A, Ghaedi M, Xiao Y, Han E, Aryal B, Zhou J, Fernandez-Hernando C, Qyang Y, Hirschi K, Niklason L. Engineered microvasculature in PDMS networks using endothelial cells derived from human induced pluripotent stem cells. Cell Transplantation 2017 DOI: 10.3727/096368916x695236.
- Circulating microRNA-122 is associated with incident metabolic syndrome and type-2 diabetesWilleit P, Yin X, Kaudewitz D, Skroblin P, Zampetaki A, Moschen A, Ramirez C, Goedeke L, Rotllan N, Bonora E, Hughes A, Santer P, Fernandez-Hernando C, Tilg H, Willeit J, Kiechl S, Mayr M. Circulating microRNA-122 is associated with incident metabolic syndrome and type-2 diabetes. Atherosclerosis 2016, 252: e263. DOI: 10.1016/j.atherosclerosis.2016.07.098.
- ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progressionAryal B, Rotllan N, Araldi E, Ramírez CM, He S, Chousterman BG, Fenn AM, Wanschel A, Madrigal-Matute J, Warrier N, Martín-Ventura JL, Swirski FK, Suárez Y, Fernández-Hernando C. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nature Communications 2016, 7: 12313. PMID: 27460411, PMCID: PMC4974469, DOI: 10.1038/ncomms12313.
- Age‐associated vascular inflammation promotes monocytosis during atherogenesisDu W, Wong C, Song Y, Shen H, Mori D, Rotllan N, Price N, Dobrian AD, Meng H, Kleinstein SH, Fernandez‐Hernando C, Goldstein DR. Age‐associated vascular inflammation promotes monocytosis during atherogenesis. Aging Cell 2016, 15: 766-777. PMID: 27135421, PMCID: PMC4933655, DOI: 10.1111/acel.12488.
- Abstract 17961: Circulating MicroRNA-122 is Associated With Incident Metabolic Syndrome and Type-2-diabetesWilleit P, Yin X, Kaudewitz D, Skroblin P, Zampetaki A, Moschen A, Ramirez C, Goedeke L, Rotllan N, Bonora E, Hughes A, Weger S, Fernandez-Hernando C, Tilg H, Willeit J, Kiechl S, Mayr M. Abstract 17961: Circulating MicroRNA-122 is Associated With Incident Metabolic Syndrome and Type-2-diabetes. Circulation 2015, 132 DOI: 10.1161/circ.132.suppl_3.17961.
- MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levelsGoedeke L, Rotllan N, Canfrán-Duque A, Aranda JF, Ramírez CM, Araldi E, Lin CS, Anderson NN, Wagschal A, de Cabo R, Horton JD, Lasunción MA, Näär AM, Suárez Y, Fernández-Hernando C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nature Medicine 2015, 21: 1280-1289. PMID: 26437365, PMCID: PMC4711995, DOI: 10.1038/nm.3949.
- Endothelial Glucocorticoid Receptor Suppresses Atherogenesis—Brief ReportGoodwin JE, Zhang X, Rotllan N, Feng Y, Zhou H, Fernández-Hernando C, Yu J, Sessa WC. Endothelial Glucocorticoid Receptor Suppresses Atherogenesis—Brief Report. Arteriosclerosis Thrombosis And Vascular Biology 2015, 35: 779-782. PMID: 25810297, PMCID: PMC4375730, DOI: 10.1161/atvbaha.114.304525.
- Dietary lipids modulate the expression of miR‐107, an miRNA that regulates the circadian systemDaimiel‐Ruiz L, Klett‐Mingo M, Konstantinidou V, Micó V, Aranda JF, García B, Martínez‐Botas J, Dávalos A, Fernández‐Hernando C, Ordovás JM. Dietary lipids modulate the expression of miR‐107, an miRNA that regulates the circadian system. Molecular Nutrition & Food Research 2015, 59: 552-565. PMID: 25522185, PMCID: PMC4591752, DOI: 10.1002/mnfr.201400616.
- Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosisRodlan N, Chamorro‐Jorganes A, Araldi E, Wanschel AC, Aryal B, Aranda JF, Goedeke L, Salerno AG, Ramírez CM, Sessa WC, Suárez Y, Fernández‐Hernando C. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. The FASEB Journal 2014, 29: 597-610. PMID: 25392271, PMCID: PMC4314230, DOI: 10.1096/fj.14-262097.
- MIR-107, a dietary modified microrna (mirna) that regulates the circadian systemDaimiel-Ruiz L, Klett-Mingo M, Konstantinidou V, Micó-Moreno V, García B, Martínez-Botas J, Fernández-Hernándo C, Ordovás J. MIR-107, a dietary modified microrna (mirna) that regulates the circadian system. Atherosclerosis 2014, 235: e129. DOI: 10.1016/j.atherosclerosis.2014.05.358.
- Improved repair of dermal wounds in mice lacking microRNA‐155Solingen C, Araldi E, Chamorro‐Jorganes A, Fernández‐Hernando C, Suárez Y. Improved repair of dermal wounds in mice lacking microRNA‐155. Journal Of Cellular And Molecular Medicine 2014, 18: 1104-1112. PMID: 24636235, PMCID: PMC4112003, DOI: 10.1111/jcmm.12255.
- Curcumin promotes exosomes/microvesicles secretion that attenuates lysosomal cholesterol traffic impairmentCanfrán‐Duque A, Pastor Ó, Quintana‐Portillo R, Lerma M, Peña G, Martín‐Hidalgo A, Fernández‐Hernando C, Lasunción MA, Busto R. Curcumin promotes exosomes/microvesicles secretion that attenuates lysosomal cholesterol traffic impairment. Molecular Nutrition & Food Research 2013, 58: 687-697. PMID: 24288129, DOI: 10.1002/mnfr.201300350.
- Abstract 115: Microrna-30c Reduces Hyperlipidemia and Atherosclerosis by Decreasing Lipid Synthesis and Lipoprotein SecretionSoh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain M. Abstract 115: Microrna-30c Reduces Hyperlipidemia and Atherosclerosis by Decreasing Lipid Synthesis and Lipoprotein Secretion. Arteriosclerosis Thrombosis And Vascular Biology 2013, 33 DOI: 10.1161/atvb.33.suppl_1.a115.
- Abstract 331: Caeolin-1 Deficiency Increases LDL Cholesterol Uptake but Attenuates Inflammation of Endothelial CellsAryal B, Lin C, Salerno A, Canfran Duque A, Aranda Gomez J, Fernandez-Hernando C. Abstract 331: Caeolin-1 Deficiency Increases LDL Cholesterol Uptake but Attenuates Inflammation of Endothelial Cells. Arteriosclerosis Thrombosis And Vascular Biology 2013, 33 DOI: 10.1161/atvb.33.suppl_1.a331.
- Abstract 446: Therapeutic Silencing of MicroRna-33 In Mice Inhibits the Progression of Atherosclerosis in Ldlr-/- MiceRotllan N, Ramírez C, Esau C, Fernández-Hernando C. Abstract 446: Therapeutic Silencing of MicroRna-33 In Mice Inhibits the Progression of Atherosclerosis in Ldlr-/- Mice. Arteriosclerosis Thrombosis And Vascular Biology 2013, 33 DOI: 10.1161/atvb.33.suppl_1.a446.
- Emerging role of MicroRNAs in the regulation of lipid metabolismFernández‐Hernando C. Emerging role of MicroRNAs in the regulation of lipid metabolism. Hepatology 2013, 57: 432-434. PMID: 22806606, DOI: 10.1002/hep.25960.
- Cardiovascular dysregulation of miR‐17‐92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesisDanielson LS, Park DS, Rotllan N, Chamorro‐Jorganes A, Guijarro MV, Fernandez‐Hernando C, Fishman GI, Phoon CK, Hernando E. Cardiovascular dysregulation of miR‐17‐92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. The FASEB Journal 2012, 27: 1460-1467. PMID: 23271053, PMCID: PMC3606524, DOI: 10.1096/fj.12-221994.
- Abstract 326: MicroRNA-30c Reduces Hyperlipidemia and Atherosclerosis by Decreasing Lipid Synthesis and Lipoprotein SecretionSoh J, Iqbal J, Quieroz J, Fernandez-Hernando C, Hussain M. Abstract 326: MicroRNA-30c Reduces Hyperlipidemia and Atherosclerosis by Decreasing Lipid Synthesis and Lipoprotein Secretion. Arteriosclerosis Thrombosis And Vascular Biology 2012, 32 DOI: 10.1161/atvb.32.suppl_1.a326.
- Abstract 45: Antiatherosclerotic Effects of miR-33 Inhibition: Increased Reverse Cholesterol Transport and Alternative-Activation (M2) of MacrophagesRayner K, Sheedy F, Esau C, Hussain F, Temel R, Parathath S, van Gils J, Rayner A, Chang A, Suarez Y, Fernandez-Hernando C, Fisher E, Moore K. Abstract 45: Antiatherosclerotic Effects of miR-33 Inhibition: Increased Reverse Cholesterol Transport and Alternative-Activation (M2) of Macrophages. Arteriosclerosis Thrombosis And Vascular Biology 2012, 32 DOI: 10.1161/atvb.32.suppl_1.a45.
- MicroRNAs regulating lipid metabolism in atherogenesisRayner K, Fernandez-Hernando C, Moore K. MicroRNAs regulating lipid metabolism in atherogenesis. Thrombosis And Haemostasis 2012, 107: 642-647. PMID: 22274626, PMCID: PMC3618663, DOI: 10.1160/th11-10-0694.
- miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signalingDávalos A, Goedeke L, Smibert P, Ramírez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penalva LO, Moore KJ, Suárez Y, Lai EC, Fernández-Hernando C. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 9232-9237. PMID: 21576456, PMCID: PMC3107310, DOI: 10.1073/pnas.1102281108.
- microRNAs, Plasma Lipids, and Cardiovascular DiseaseDávalos A, Fernández-Hernando C. microRNAs, Plasma Lipids, and Cardiovascular Disease. Current Cardiovascular Risk Reports 2010, 5: 10-17. DOI: 10.1007/s12170-010-0145-1.
- MiR-33 Contributes to the Regulation of Cholesterol HomeostasisRayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernández-Hernando C. MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science 2010, 328: 1570-1573. PMID: 20466885, PMCID: PMC3114628, DOI: 10.1126/science.1189862.
- Haloperidol disrupts lipid rafts and impairs insulin signaling in SH-SY5Y cellsSánchez-Wandelmer J, Dávalos A, de la Peña G, Cano S, Giera M, Canfrán-Duque A, Bracher F, Martín-Hidalgo A, Fernández-Hernando C, Lasunción M, Busto R. Haloperidol disrupts lipid rafts and impairs insulin signaling in SH-SY5Y cells. Neuroscience 2010, 167: 143-153. PMID: 20123000, DOI: 10.1016/j.neuroscience.2010.01.051.
- Genetic Evidence Supporting a Critical Role of Endothelial Caveolin-1 during the Progression of AtherosclerosisFernández-Hernando C, Yu J, Suárez Y, Rahner C, Dávalos A, Lasunción MA, Sessa WC. Genetic Evidence Supporting a Critical Role of Endothelial Caveolin-1 during the Progression of Atherosclerosis. Cell Metabolism 2009, 10: 48-54. PMID: 19583953, PMCID: PMC2735117, DOI: 10.1016/j.cmet.2009.06.003.
- Abstract 3594: Nogo-B is Essential for Macrophage Dependent Inflammatory Arteriogenesis and AngiogenesisYu J, Fernandez-Hernando C, Suarez Y, Suarez Y, Schleicher M, Hao Z, Wright P, Kyriakides T, Sessa W. Abstract 3594: Nogo-B is Essential for Macrophage Dependent Inflammatory Arteriogenesis and Angiogenesis. Circulation 2008, 118 DOI: 10.1161/circ.118.suppl_18.s_447-c.
- Loss of Akt1 Leads to Severe Atherosclerosis and Occlusive Coronary Artery DiseaseFernández-Hernando C, Ackah E, Yu J, Suárez Y, Murata T, Iwakiri Y, Prendergast J, Miao RQ, Birnbaum MJ, Sessa WC. Loss of Akt1 Leads to Severe Atherosclerosis and Occlusive Coronary Artery Disease. Cell Metabolism 2007, 6: 446-457. PMID: 18054314, PMCID: PMC3621848, DOI: 10.1016/j.cmet.2007.10.007.
- Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial CellsSuárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells. Circulation Research 2007, 100: 1164-1173. PMID: 17379831, DOI: 10.1161/01.res.0000265065.26744.17.
- Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthaseFernández-Hernando C, Fukata M, Bernatchez PN, Fukata Y, Lin MI, Bredt DS, Sessa WC. Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. Journal Of Cell Biology 2006, 174: 369-377. PMID: 16864653, PMCID: PMC2064233, DOI: 10.1083/jcb.200601051.
- W08.195 Tamoxifen prevents the LDL-induced downregulation of LDL-receptor activity and expression in molt-4 cellsFernández-Hernando C, Suárez Y, Martínez-Botas J, Cáceres D, Lasunción M. W08.195 Tamoxifen prevents the LDL-induced downregulation of LDL-receptor activity and expression in molt-4 cells. Atherosclerosis Plus 2004, 5: 45. DOI: 10.1016/s1567-5688(04)90194-3.