Yuan Ren, PhD
Associate Research Scientist - Molecular Biophysics & BiochemistryCards
About
Research
Publications
2024
Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis
Ren Y, Yang J, Fujita B, Zhang Y, Berro J. Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis. Cell Reports 2024, 43: 114725. PMID: 39276354, PMCID: PMC11476202, DOI: 10.1016/j.celrep.2024.114725.Peer-Reviewed Original ResearchClathrin-mediated endocytosisF-actinActin cytoskeletonFission yeast Schizosaccharomyces pombeYeast Schizosaccharomyces pombeCell adhesion complexAdhesion complexesMembrane localizationPN forcesStable bindingEnd4pCross-regulationCytoskeletonActinEndocytosisMembraneBindingMechanical forcesTalinTransmission of forcesThatchForce transmissionDomainCellsFissionIn vivo force measurements on formin Cdc12p using new coiled-coil force sensors
Saito T, Ren Y, Berro J. In vivo force measurements on formin Cdc12p using new coiled-coil force sensors. Biophysical Journal 2024, 123: 465a. DOI: 10.1016/j.bpj.2023.11.2817.Peer-Reviewed Original Research
2023
Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors
Ren Y, Yang J, Fujita B, Jin H, Zhang Y, Berro J. Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors. Science Advances 2023, 9: eadi1535. PMID: 37831774, PMCID: PMC10575576, DOI: 10.1126/sciadv.adi1535.Peer-Reviewed Original ResearchConceptsActin cytoskeletonPlasma membraneHuntingtin Interacting Protein 1Clathrin-mediated endocytosisCountless cellular processesEndocytic machineryCellular processesClathrin latticesProtein condensationCytoskeletonEnd4pProtein 1Membrane deformationPiconewton forcesEndocytosisVivo force measurementsMembranePiconewtonsClathrinMachineryProteinCoatMolecular scale2A peptide from ERBV-1 efficiently separates endogenous protein domains in the fission yeast Schizosaccharomyces pombe
Ren Y, Lin Q, Berro J. 2A peptide from ERBV-1 efficiently separates endogenous protein domains in the fission yeast Schizosaccharomyces pombe. MicroPublication Biology 2023, 2023: 10.17912/micropub.biology.000941. PMID: 37767365, PMCID: PMC10520729, DOI: 10.17912/micropub.biology.000941.Peer-Reviewed Original Research
2022
Force redistribution during clathrin-mediated endocytosis is revealed by new phase-separating force sensors
Ren Y, Yang J, Jin H, Zhang Y, Berro J. Force redistribution during clathrin-mediated endocytosis is revealed by new phase-separating force sensors. Biophysical Journal 2022, 121: 230a. DOI: 10.1016/j.bpj.2021.11.1598.Peer-Reviewed Original Research In PressIsolated THATCH domain of End4 is unable to bind F-actin independently in the fission yeast Schizosaccharomyces pombe
Ren Y, Berro J. Isolated THATCH domain of End4 is unable to bind F-actin independently in the fission yeast Schizosaccharomyces pombe. MicroPublication Biology 2022, 2022: 10.17912/micropub.biology.000508. PMID: 35024575, PMCID: PMC8738963, DOI: 10.17912/micropub.biology.000508.Peer-Reviewed Original Research
2021
A Co-purification Method for Efficient Production and Src Kinase-mediated Phosphorylation of Aplysia Cortactin.
Brown S, Ren Y, Suter D, Mattoo S. A Co-purification Method for Efficient Production and Src Kinase-mediated Phosphorylation of Aplysia Cortactin. Bio-protocol 2021, 11: e4158. PMID: 34692908, PMCID: PMC8481015, DOI: 10.21769/bioprotoc.4158.Peer-Reviewed Original ResearchPhosphorylation of cortactinActin cytoskeletal dynamicsNon-phosphorylated proteinActin-binding proteinsRecombinant protein expressionCell-free systemTumor cell metastasisNeuronal growth conesBacterial kinasesLamellipodia protrusionBag cell neuronsPhosphorylation assaysNon-neuronal cellsFilopodia formationSrc kinaseInduced proteinsCortactinTyrosine kinaseEfficient expressionKinaseCell migrationPhosphorylationBiochemical studiesCell metastasisGrowth conesRapid adaptation of endocytosis, exocytosis and eisosomes after an acute increase in membrane tension in yeast cells
Lemière J, Ren Y, Berro J. Rapid adaptation of endocytosis, exocytosis and eisosomes after an acute increase in membrane tension in yeast cells. ELife 2021, 10: e62084. PMID: 33983119, PMCID: PMC9045820, DOI: 10.7554/elife.62084.Peer-Reviewed Original ResearchConceptsClathrin-mediated endocytosisMembrane tensionActin machineryYeast cellsFission yeast cellsRate of endocytosisRate of exocytosisActin assemblyLarge membrane tensionPlasma membraneCell wallMolecular mechanismsTurgor pressureEndocytosisRapid adaptationEisosomesExocytosisMachineryQuantitative microscopyMinute time scaleHypotonic shockCellsEukaryotesMembraneTension regulation
2019
A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones
Ren Y, He Y, Brown S, Zbornik E, Mlodzianoski M, Ma D, Huang F, Mattoo S, Suter D. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones. Molecular Biology Of The Cell 2019, 30: 1817-1833. PMID: 31116646, PMCID: PMC6727743, DOI: 10.1091/mbc.e18-04-0202.Peer-Reviewed Original ResearchConceptsTyrosine phosphorylation sitesPhosphorylation sitesFilopodia formationNeuronal growth conesSingle tyrosine phosphorylation sitePhosphorylated cortactinGrowth conesPhospho-mimetic mutantVitro kinase assaysFilopodia lengthFunction of cortactinTyrosine-phosphorylated cortactinFormation of filopodiaSrc tyrosine kinaseCortactin mutantMultiple actinPhosphorylation substratesActin organizationCellular processesLength of filopodiaKinase assaysCortactinTyrosine kinaseNonneuronal cellsFilopodia
2018
Three-Dimensional Retinal Organoids Facilitate the Investigation of Retinal Ganglion Cell Development, Organization and Neurite Outgrowth from Human Pluripotent Stem Cells
Fligor C, Langer K, Sridhar A, Ren Y, Shields P, Edler M, Ohlemacher S, Sluch V, Zack D, Zhang C, Suter D, Meyer J. Three-Dimensional Retinal Organoids Facilitate the Investigation of Retinal Ganglion Cell Development, Organization and Neurite Outgrowth from Human Pluripotent Stem Cells. Scientific Reports 2018, 8: 14520. PMID: 30266927, PMCID: PMC6162218, DOI: 10.1038/s41598-018-32871-8.Peer-Reviewed Original ResearchConceptsRetinal ganglion cellsRetinal organoidsAxonal outgrowthRGC developmentNeurite outgrowthExtensive axonal outgrowthRetinal ganglion cell developmentPost-synaptic targetsGanglion cell developmentStem cellsPluripotent stem cellsRGC layerThree-dimensional retinal organoidsGanglion cellsElaborate growth conesRGC differentiationHuman pluripotent stem cellsCellular replacementRetinal developmentGrowth factor signalingGrowth conesCell developmentOrganoidsFactor signalingGuidance receptors