2025
Biological and clinical significance of tumour-infiltrating lymphocytes in the era of immunotherapy: a multidimensional approach
Lopez de Rodas M, Villalba-Esparza M, Sanmamed M, Chen L, Rimm D, Schalper K. Biological and clinical significance of tumour-infiltrating lymphocytes in the era of immunotherapy: a multidimensional approach. Nature Reviews Clinical Oncology 2025, 22: 163-181. PMID: 39820025, DOI: 10.1038/s41571-024-00984-x.Peer-Reviewed Original ResearchConceptsTumor-infiltrating lymphocytesImmune-checkpoint inhibitorsTumor-infiltrating lymphocyte subpopulationsClinical significance of tumor-infiltrating lymphocytesPredictive value of tumor-infiltrating lymphocytesSignificance of tumor-infiltrating lymphocytesStudy of tumor-infiltrating lymphocytesImmune-checkpoint inhibitor therapyImmune-mediated tumor eliminationEra of immunotherapyT cell dysfunctionBiomarkers of responseSolid tumor typesImmunotherapeutic approachesAntigen-reactiveTumor microenvironmentTumor typesClinical outcomesTumor eliminationClinical significanceSingle-cell transcriptomicsPredictive valueAnticancer mechanismClinical implicationsResistance mechanisms
2024
CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cellular & Molecular Immunology 2024, 21: 1089-1108. PMID: 39134804, PMCID: PMC11442786, DOI: 10.1038/s41423-024-01207-0.Peer-Reviewed Original ResearchCAR-natural killerCAR-T cellsCAR-TSolid tumorsHematologic malignanciesCell therapyChimeric antigen receptor (CAR)-T cell therapyImmuno-suppressive tumor microenvironmentCAR-T cell therapyCellular cancer immunotherapyRelapsed/refractory hematologic malignanciesCAR-NK cellsTumor traffickingAdoptive immunotherapyCell immunotherapyCellular immunotherapyCancer immunotherapyImmunotherapeutic approachesHLA compatibilityTumor microenvironmentAdult patientsImmunotherapyCombat cancerTumorMalignancy
2023
NCCN Guidelines® Insights: B-Cell Lymphomas, Version 6.2023.
Zelenetz A, Gordon L, Abramson J, Advani R, Andreadis B, Bartlett N, Budde L, Caimi P, Chang J, Christian B, DeVos S, Dholaria B, Fayad L, Habermann T, Hamid M, Hernandez-Ilizaliturri F, Hu B, Kaminski M, Karimi Y, Kelsey C, King R, Krivacic S, LaCasce A, Lim M, Messmer M, Narkhede M, Rabinovitch R, Ramakrishnan P, Reid E, Roberts K, Saeed H, Smith S, Svoboda J, Swinnen L, Tuscano J, Vose J, Dwyer M, Sundar H. NCCN Guidelines® Insights: B-Cell Lymphomas, Version 6.2023. Journal Of The National Comprehensive Cancer Network 2023, 21: 1118-1131. PMID: 37935098, DOI: 10.6004/jnccn.2023.0057.Peer-Reviewed Original ResearchConceptsB-cell lymphomaMantle cell lymphomaCAR T-cell therapyT-cell therapyTyrosine kinase inhibitorsFollicular lymphomaNCCN guidelinesAnti-CD19 CAR T-cell therapyRefractory B-cell lymphomaTreatment of FLBispecific T-cell engagersBruton tyrosine kinase inhibitorsLarge B-cell lymphomaNCCN Guidelines InsightsRefractory follicular lymphomaNovel immunotherapeutic approachesRelapsed Follicular LymphomaT-cell engagersTreatment landscapeImmunotherapeutic approachesFrontline settingTreatment optionsCell lymphomaLymphomaTherapy
2022
Deciphering the Clinical Trials of Immunotherapy in Glioblastoma: What a Neuroradiologist Needs to Know
Varzaneh F, Merkaj S, Petersen G, Bahar R, Jekel L, Pala A, Malhotra A, Ivanidze J, Aboian M. Deciphering the Clinical Trials of Immunotherapy in Glioblastoma: What a Neuroradiologist Needs to Know. Neurographics 2022, 12: 176-187. DOI: 10.3174/ng.2100055.Peer-Reviewed Original ResearchTreatment of glioblastomaClinical trialsTrial failuresImmune checkpoint inhibitorsMechanisms of immunotherapyPrimary intracranial neoplasmsCheckpoint inhibitorsSurgical resectionImmunotherapeutic approachesSurvival outcomesIntracranial neoplasmsRadiation therapyImmunotherapyGlioblastoma treatmentGlioblastomaMultidisciplinary approachTrialsTreatmentNeuroradiologistsPresent studyFuture directionsResectionChemotherapyFailurePrognosisMutant p53 drives an immune cold tumor immune microenvironment in oral squamous cell carcinoma
Shi Y, Xie T, Wang B, Wang R, Cai Y, Yuan B, Gleber-Netto FO, Tian X, Rodriguez-Rosario AE, Osman AA, Wang J, Pickering CR, Ren X, Sikora AG, Myers JN, Rangel R. Mutant p53 drives an immune cold tumor immune microenvironment in oral squamous cell carcinoma. Communications Biology 2022, 5: 757. PMID: 35902768, PMCID: PMC9334280, DOI: 10.1038/s42003-022-03675-4.Peer-Reviewed Original ResearchConceptsOral cavity squamous cell carcinomaTumor immune microenvironmentCold tumor immune microenvironmentSquamous cell carcinomaICI therapyOSCC modelCell carcinomaImmune microenvironmentCold tumorsCell death protein 1 (PD-1) inhibitorsCancer cell-intrinsic mechanismsImmune checkpoint inhibitor therapyOral squamous cell carcinomaCheckpoint inhibitor therapyCombination ICI treatmentEffective immunotherapeutic approachesInterferon genes (STING) agonistImmunosuppressive M2 macrophagesProtein 1 inhibitorTobacco-associated cancersICI responsivenessICI treatmentCell-intrinsic mechanismsImmunotherapeutic approachesInhibitor therapyImmune-checkpoint inhibitors for glioblastoma: what have we learned?
Omuro A. Immune-checkpoint inhibitors for glioblastoma: what have we learned? Arquivos De Neuro-Psiquiatria 2022, 80: 266-269. PMID: 35976319, PMCID: PMC9491432, DOI: 10.1590/0004-282x-anp-2022-s129.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsRecurrent glioblastomaBrain tumorsRandomized phase 3 trialCommon malignant primary brain tumorPost-treatment tumor samplesMalignant primary brain tumorSuccessful immunotherapeutic approachesPhase 3 trialPhase 1 studySelection of patientsT cell dysfunctionNew safety concernsHigh mutational burdenPrimary brain tumorsCheckpoint inhibitorsRadiographic responseImmunotherapeutic approachesPD-L1Survival improvementImmunologic responseTherapeutic optionsClinical trialsCNS microenvironmentCell dysfunction
2020
The role of survivin in the progression of pancreatic ductal adenocarcinoma (PDAC) and a novel survivin-targeted therapeutic for PDAC
Brown M, Zhang W, Yan D, Kenath R, Le L, Wang H, Delitto D, Ostrov D, Robertson K, Liu C, Pham K. The role of survivin in the progression of pancreatic ductal adenocarcinoma (PDAC) and a novel survivin-targeted therapeutic for PDAC. PLOS ONE 2020, 15: e0226917. PMID: 31929540, PMCID: PMC6957139, DOI: 10.1371/journal.pone.0226917.Peer-Reviewed Original ResearchConceptsPancreatic ductal adenocarcinomaTypes of cancerDuctal adenocarcinomaSurvivin expressionSurvivin inhibitorClinical response rateNovel survivin inhibitorHalf of patientsElevated survivin expressionLower patient survivalPancreatic tumor microenvironmentPotential therapeutic targetExpression of survivinRole of survivinField of oncologyPancreatic cancer linesImmunotherapeutic approachesPatient survivalUntreated cohortTherapeutic responseInhibitor of survivinTreatment resistancePDAC progressionEffective treatmentTumor cell migrationVaccine and Cell-based Therapeutic Approaches in Acute Myeloid Leukemia
Agrawal V, Gbolahan OB, Stahl M, Zeidan AM, Zaid MA, Farag SS, Konig H. Vaccine and Cell-based Therapeutic Approaches in Acute Myeloid Leukemia. Current Cancer Drug Targets 2020, 20: 473-489. PMID: 32357813, DOI: 10.2174/1568009620666200502011059.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsAnimalsAntibodies, MonoclonalAntigens, NeoplasmAntineoplastic Agents, ImmunologicalCancer VaccinesHematopoietic Stem Cell TransplantationHumansImmunotherapy, AdoptiveKiller Cells, NaturalLeukemia, Myeloid, AcuteReceptors, Chimeric AntigenT-Lymphocytes, CytotoxicTransplantation, HomologousTumor EscapeConceptsAcute myeloid leukemiaTumor-associated antigensImmune systemAML cellsMyeloid leukemiaTreatment of AMLAllogeneic stem cell transplantationEffective immunotherapeutic strategiesNatural killer cellsStem cell transplantationHumoral immune reactionsCell-based therapeutic approachesSurface receptor expressionAcute leukemia cellsDirect immunosuppressionImmunotherapeutic strategiesTreatment landscapeImmunotherapeutic approachesCellular immunotherapyKiller cellsCell transplantationClinical managementHematologic malignanciesReceptor expressionDecreased immunogenicity
2019
Virus-like Vesicles Expressing Multiple Antigens for Immunotherapy of Chronic Hepatitis B
Yarovinsky TO, Mason SW, Menon M, Krady MM, Haslip M, Madina BR, Ma X, Moshkani S, Chiale C, Pal AC, Almassian B, Rose JK, Robek MD, Nakaar V. Virus-like Vesicles Expressing Multiple Antigens for Immunotherapy of Chronic Hepatitis B. IScience 2019, 21: 391-402. PMID: 31704650, PMCID: PMC6889364, DOI: 10.1016/j.isci.2019.10.040.Peer-Reviewed Original ResearchHepatitis B virusChronic hepatitis BHepatitis BSerum HBV surface antigenVirus-like vesiclesLiver HBV RNAPersistent HBV replicationHBV surface antigenImmune exhaustionChronic hepatitisHBV antigensHBV infectionBooster immunizationCD8 TChronic modelHBV replicationImmunotherapeutic approachesLiver injuryNaive miceHBV RNAB virusCurrent treatmentSurface antigenUnmet needMultiple antigensImmunotherapy and targeted therapy combinations in metastatic breast cancer
Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. The Lancet Oncology 2019, 20: e175-e186. PMID: 30842061, DOI: 10.1016/s1470-2045(19)30026-9.Peer-Reviewed Original ResearchConceptsMetastatic breast cancerBreast cancerImmune checkpoint inhibitorsTumor-infiltrating lymphocytesDeath ligand 1Most breast cancersNew treatment modalitiesSingle-drug therapyCyclin-dependent kinase 4Development of combinationsCheckpoint inhibitorsEndocrine therapyDeath-1Immunotherapeutic approachesBiological therapyTherapy combinationsTreatment modalitiesLittle efficacyImmune evasionAngiogenesis inhibitorsTherapyImmunotherapyCancerPolymerase inhibitorsMonoclonal antibodies
2017
A phase I study of the safety and immunogenicity of a multipeptide personalized genomic vaccine in the adjuvant treatment of solid cancers.
Kyi C, Sabado R, Blazquez A, Posner M, Genden E, Miles B, Khorasani H, Dottino P, Irie H, Port E, Wolf A, Cho H, Parekh S, Mandeli J, Galsky M, Oh W, Gnjatic S, Schadt E, Friedlander P, Bhardwaj N. A phase I study of the safety and immunogenicity of a multipeptide personalized genomic vaccine in the adjuvant treatment of solid cancers. Journal Of Clinical Oncology 2017, 35: tps3114-tps3114. DOI: 10.1200/jco.2017.35.15_suppl.tps3114.Peer-Reviewed Original ResearchPhase I studyClinical trialsAdjuvant treatmentSolid cancersCommon Terminology Criteria for Adverse Events v5.0Epitope-specific T cell responsesDevelopment of immunotherapeutic approachesTreatment of solid tumorsAdjuvant treatment of solid tumorsTreatment of solid cancersLobular breast cancerT cell responsesBlood samplesImmune response monitoringSingle-center studyPeripheral blood samplesDisease recurrence riskCellular immune responsesAdministered 1 dayUterine adnexaSerous carcinomaImmunotherapeutic approachesPoly-ICLCTumor antigensHistological diagnosis
2016
Immunomodulatory nanoparticles ameliorate disease in the Leishmania (Viannia) panamensis mouse model
Siefert AL, Ehrlich A, Corral MJ, Goldsmith-Pestana K, McMahon-Pratt D, Fahmy TM. Immunomodulatory nanoparticles ameliorate disease in the Leishmania (Viannia) panamensis mouse model. Biomaterials 2016, 108: 168-176. PMID: 27636154, PMCID: PMC5049880, DOI: 10.1016/j.biomaterials.2016.09.004.Peer-Reviewed Original ResearchConceptsPathogen-associated molecular patternsAccumulation of MDSCsHyper-inflammatory responseOngoing immune responseCytokine IL-10Antigen-presenting cellsCurrent treatment strategiesInflammation-mediated diseasesLong treatment regimensSite of infectionNew World leishmaniasisCellular immunomodulationIL-17Suppressor cellsDendritic cellsIL-10Immunotherapeutic approachesChronic inflammationTreatment regimensIL-13Free CpGTreatment strategiesTherapeutic effectImmune responsePreclinical studies
2013
Effect of PDL-1 expression on prognosis in head and neck squamous cell carcinoma.
Vasilakopoulou M, Velcheti V, Rampias T, Sasaki C, Rimm D, Fountzilas G, Psyrri A. Effect of PDL-1 expression on prognosis in head and neck squamous cell carcinoma. Journal Of Clinical Oncology 2013, 31: 6012-6012. DOI: 10.1200/jco.2013.31.15_suppl.6012.Peer-Reviewed Original ResearchPDL-1 expressionPDL-1Prognostic significanceT cellsMultivariate Cox proportional hazards modelCox proportional hazards modelNeck squamous cell carcinomaDeath-1 receptorFavorable clinical outcomeKaplan-Meier methodInduces tumor regressionSquamous cell carcinomaHNSCC tissue microarrayLog-rank testProportional hazards modelProtein expression levelsImproved DFSEfficacy outcomesImmunotherapeutic approachesClinical outcomesMultivariable analysisEntire cohortCell carcinomaCancer patientsFavorable outcomeImmunogenicity, Efficacy, Safety, and Mechanism of Action of Epitope Vaccine (Lu AF20513) for Alzheimer's Disease: Prelude to a Clinical Trial
Davtyan H, Ghochikyan A, Petrushina I, Hovakimyan A, Davtyan A, Poghosyan A, Marleau AM, Movsesyan N, Kiyatkin A, Rasool S, Larsen AK, Madsen PJ, Wegener KM, Ditlevsen DK, Cribbs DH, Pedersen LO, Agadjanyan MG. Immunogenicity, Efficacy, Safety, and Mechanism of Action of Epitope Vaccine (Lu AF20513) for Alzheimer's Disease: Prelude to a Clinical Trial. Journal Of Neuroscience 2013, 33: 4923-4934. PMID: 23486963, PMCID: PMC3634356, DOI: 10.1523/jneurosci.4672-12.2013.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAlzheimer DiseaseAmyloid beta-PeptidesAmyloid beta-Protein PrecursorAnalysis of VarianceAnimalsAntibodies, Anti-IdiotypicAntibody FormationBrainCells, CulturedCytokinesDisease Models, AnimalDose-Response Relationship, ImmunologicEnzyme-Linked Immunosorbent AssayEpitopes, B-LymphocyteEpitopes, T-LymphocyteFemaleGuinea PigsHumansImmunologic MemoryMacaca fascicularisMaleMiceMice, TransgenicMutationNeurogliaPeptide FragmentsPlaque, AmyloidProtein BindingSurface Plasmon ResonanceT-LymphocytesVaccinationVaccinesConceptsAnti-Aβ antibodiesMemory T helper cellsT cell responsesT helper cellsClinical trialsMild ADDisease processAutoreactive T cell responsesAD mouse modelAD-like pathologyCerebral amyloid angiopathyRecent clinical trialsTetanus toxoid vaccineStrong humoral immunityStrong humoral responseAlzheimer's disease processNeurotoxic Aβ peptidesMechanism of actionMicroglial activationAmyloid angiopathyImmunotherapeutic approachesSingle immunizationHumoral immunityHumoral responseToxoid vaccine
2012
Immunotherapy for Cutaneous T-Cell Lymphoma
Modi B, Foss F, Edelson R, Girardi M. Immunotherapy for Cutaneous T-Cell Lymphoma. Contemporary Hematology 2012, 307-316. DOI: 10.1007/978-1-62703-170-7_18.Peer-Reviewed Original ResearchCutaneous T-cell lymphomaT-cell lymphomaToll-like receptor agonistsEffector T cell activityImmune effector mechanismsT cell activityGoal of therapyCytokine-based therapiesHistone deacetylase inhibitorsClinical responseMost patientsImmunotherapeutic approachesInterleukin-12Receptor agonistEffector mechanismsInterleukin-2Therapeutic approachesImmune functionDeacetylase inhibitorsTherapyCTCLPatientsLymphomaAttractive targetImmunotherapy
2010
Human Pluripotent Stem Cells Produce Natural Killer Cells That Mediate Anti-HIV-1 Activity by Utilizing Diverse Cellular Mechanisms
Ni Z, Knorr DA, Clouser CL, Hexum MK, Southern P, Mansky LM, Park IH, Kaufman DS. Human Pluripotent Stem Cells Produce Natural Killer Cells That Mediate Anti-HIV-1 Activity by Utilizing Diverse Cellular Mechanisms. Journal Of Virology 2010, 85: 43-50. PMID: 20962093, PMCID: PMC3014194, DOI: 10.1128/jvi.01774-10.Peer-Reviewed Original ResearchConceptsNK cellsHIV/AIDSAnti-HIV-1 immunityHIV-1-infected individualsAntibody-dependent cellular cytotoxicityTumor cellsCEM-GFP cellsFunctional NK cellsAnti-HIV-1 activityNatural killer cellsHIV-1 infectionProduction of chemokinesCellular mechanismsHIV-1 replicationStem cellsCellular immunotherapeutic approachesInnate immune systemVirus-infected cellsInfected targetsPluripotent stem cellsImmunotherapeutic approachesNatural killerKiller cellsCell-based therapiesT cells
1992
Treatment of Multiple Sclerosis with Cyclophosphamide
Mackin G, Dawson D, Hafler D, Weiner H. Treatment of Multiple Sclerosis with Cyclophosphamide. Clinical Medicine And The Nervous System 1992, 199-216. DOI: 10.1007/978-1-4471-3184-7_9.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply