2018
Parvalbumin expression affects synaptic development and physiology at the Drosophila larval NMJ
He T, Nitabach MN, Lnenicka GA. Parvalbumin expression affects synaptic development and physiology at the Drosophila larval NMJ. Journal Of Neurogenetics 2018, 32: 209-220. PMID: 30175644, DOI: 10.1080/01677063.2018.1498496.Peer-Reviewed Original ResearchConceptsSingle action potentialAP trainsAction potentialsPresynaptic CaMuscle fiber 5Synaptic developmentMotor terminal growthPaired-pulse facilitationParvalbumin expressionFibers 5Transmitter releasePV expressionSynaptic boutonsIb terminalsSynaptic enhancementSynaptic facilitationOGB-1Electrophysiological recordingsParvalbuminRate of riseHomeostatic responseFluorescent CaLarval NMJsDrosophila neuronsResidual Ca
2017
Report: NIA Workshop on Measures of Physiologic Resiliencies in Human Aging
Hadley E, Kuchel G, Newman A, Allore H, Bartley J, Bergeman C, Blinov M, Colon-Emeric C, Dabhar F, Dugan L, Dutta C, Eldadah B, Ferrucci L, Kirkland J, Kritchevsky S, Lipsitz L, Nadkarni N, Reed M, Schmader K, Sierra F, Studenski S, Varadhan R, Walston J, Whitson H, Yung R. Report: NIA Workshop on Measures of Physiologic Resiliencies in Human Aging. The Journals Of Gerontology Series A 2017, 72: 980-990. PMID: 28475732, PMCID: PMC5861884, DOI: 10.1093/gerona/glx015.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsFocus of careAging-related factorsLaboratory animal modelsLong-term predictorsMultiple determinantsHuman agingHealthy life spanClinical dataEpidemiological studiesAnimal modelsHuman resiliencyOlder adultsHomeostatic responseAdverse effectsNational InstituteAssessing resilienceResilience outcomesPhenotype definitionResilience data
2016
Sensory Neurons that Detect Stretch and Nutrients in the Digestive System
Williams E, Chang R, Strochlic D, Umans B, Lowell B, Liberles S. Sensory Neurons that Detect Stretch and Nutrients in the Digestive System. Cell 2016, 166: 209-221. PMID: 27238020, PMCID: PMC4930427, DOI: 10.1016/j.cell.2016.05.011.Peer-Reviewed Original ResearchConceptsSensory neuronsNormal autonomic functionVagal sensory neuronsGut hormone responsesGut-to-brainVagal afferentsGut hormonesNeuronal identityPeripheral anatomyVagus nerveAutonomic functionConduction velocityMechanical distensionOrgan distensionAnatomical mappingGastrointestinal physiologyHomeostatic responseHormonal responsesNeuronsGastrointestinal tractCentral anatomyNeural inputBody-brain connectionIngested nutrientsDistensionControl of plasma membrane lipid homeostasis by the extended synaptotagmins
Saheki Y, Bian X, Schauder CM, Sawaki Y, Surma MA, Klose C, Pincet F, Reinisch KM, De Camilli P. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nature Cell Biology 2016, 18: 504-515. PMID: 27065097, PMCID: PMC4848133, DOI: 10.1038/ncb3339.Peer-Reviewed Original ResearchConceptsSMP domainE-Syt1ER-PM tethersMembrane lipid homeostasisPlasma membrane lipidsEndoplasmic reticulum proteinAccumulation of diacylglycerolE-SytsExtended synaptotagminsMolecular basisMajor glycerolipidsReticulum proteinsMetabolic recyclingMembrane lipidsLipid homeostasisPLC activationSynaptotagminSustained accumulationHomeostatic responseDiacylglycerolGlycerolipidsMetabolic changesGenomeCa2Accumulation
2013
Mineralocorticoid Receptor Phosphorylation Regulates Ligand Binding and Renal Response to Volume Depletion and Hyperkalemia
Shibata S, Rinehart J, Zhang J, Moeckel G, Castañeda-Bueno M, Stiegler AL, Boggon TJ, Gamba G, Lifton RP. Mineralocorticoid Receptor Phosphorylation Regulates Ligand Binding and Renal Response to Volume Depletion and Hyperkalemia. Cell Metabolism 2013, 18: 660-671. PMID: 24206662, PMCID: PMC3909709, DOI: 10.1016/j.cmet.2013.10.005.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAngiotensin IIAnimalsChlorocebus aethiopsCOS CellsCytoplasmElectrolytesHumansHyperkalemiaKidneyLigandsMiceMolecular Sequence DataPhosphoprotein PhosphatasesPhosphorylationPhosphoserinePotassium, DietaryProtein Serine-Threonine KinasesProtein TransportRatsReceptors, MineralocorticoidSignal TransductionTranscriptional ActivationConceptsVolume depletionMineralocorticoid receptorAldosterone-dependent increaseHormone receptor activityNuclear hormone receptor activityMR activationRenal responseDistinct adaptive responsesAngiotensin IIDistal nephronCl reabsorptionHyperkalemiaMR ligand-binding domainReceptor activityApical proton pumpPlasma volumeReceptor bindingHomeostatic responseNuclear receptorsReceptor phosphorylation
2004
Dietary acid, endothelins, and sleep.
Alpern RJ, Preisig PA. Dietary acid, endothelins, and sleep. Transactions Of The American Clinical And Climatological Association 2004, 115: 385-93; discussion 393-4. PMID: 17060981, PMCID: PMC2263788.Peer-Reviewed Original ResearchConceptsTrafficking of NHE3Proximal tubule cell lineNHE3 activityTubule cell lineSecond intracellular loopEndothelin expressionDietary acidNHE3 abundanceActivation of NHE3OKP cellsProximal tubulesNHE3 mRNAApical membraneHomeostatic responseProtein expressionC-fosReceptor specificityIntracellular loopReceptorsEndothelinCell linesC-JunNHE3C-SrcAcid signaling
1997
The clinical spectrum of chronic metabolic acidosis: Homeostatic mechanisms produce significant morbidity
Alpern R, Sakhaee K. The clinical spectrum of chronic metabolic acidosis: Homeostatic mechanisms produce significant morbidity. American Journal Of Kidney Diseases 1997, 29: 291-302. PMID: 9016905, DOI: 10.1016/s0272-6386(97)90045-7.Peer-Reviewed Original ResearchConceptsChronic metabolic acidosisMetabolic acidosisHomeostatic responseSerum HCO3Acid loadBody's homeostatic responseHomeostatic mechanismsMuscle protein breakdownNormal homeostatic mechanismsSignificant morbidityClinical spectrumMeat ingestionBone demineralizationRenal growthClinical conditionsPathologic processesPathologic consequencesAcidosisProtein breakdownBloodResponseMorbidityPatientsNephrolithiasisIngestion
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply