2024
Neoself-antigens are the primary target for autoreactive T cells in human lupus
Mori S, Kohyama M, Yasumizu Y, Tada A, Tanzawa K, Shishido T, Kishida K, Jin H, Nishide M, Kawada S, Motooka D, Okuzaki D, Naito R, Nakai W, Kanda T, Murata T, Terao C, Ohmura K, Arase N, Kurosaki T, Fujimoto M, Suenaga T, Kumanogoh A, Sakaguchi S, Ogawa Y, Arase H. Neoself-antigens are the primary target for autoreactive T cells in human lupus. Cell 2024, 187: 6071-6087.e20. PMID: 39276775, DOI: 10.1016/j.cell.2024.08.025.Peer-Reviewed Original ResearchSystemic lupus erythematosusAutoreactive T cellsT cellsMHC-IISelf-antigensDevelopment of lupus-like diseaseCD4<sup>+</sup> T cellsEpstein-Barr virus reactivationPathogenesis of systemic lupus erythematosusRisk factorsSystemic lupus erythematosus patientsMajor histocompatibility complex class IIHistocompatibility complex class IILupus-like diseaseLupus T cellsHuman lupusGenetic risk factorsVirus reactivationLupus erythematosusAdult micePrimary targetTrigger autoimmunityClass IIPeptide presentationInvariant chain
2018
Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3
Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, Chen L, Chen Y, Zhu G, Yin W, Zheng L, Zhou T, Badri T, Yao S, Zhu S, Boto A, Sznol M, Melero I, Vignali DAA, Schalper K, Chen L. Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell 2018, 176: 334-347.e12. PMID: 30580966, PMCID: PMC6365968, DOI: 10.1016/j.cell.2018.11.010.Peer-Reviewed Original ResearchConceptsFibrinogen-like protein 1MHC-IILAG-3Major histocompatibility complex class IILymphocyte activation gene-3Histocompatibility complex class IILiver-secreted proteinsImmune inhibitory receptorsProtein 1Immune evasion mechanismsCell immunityTumor immunityPoor prognosisCancer immunotherapyCancer patientsInhibitory receptorsEvasion mechanismsHuman cancer cellsCell activationClass IIMouse tumorsMonoclonal antibodiesCancer cellsInhibitory ligandsInhibitory function
2006
Intranasal Exposure to Bacterial Superantigens Induces Airway Inflammation in HLA Class II Transgenic Mice
Rajagopalan G, Iijima K, Singh M, Kita H, Patel R, David C. Intranasal Exposure to Bacterial Superantigens Induces Airway Inflammation in HLA Class II Transgenic Mice. Infection And Immunity 2006, 74: 1284-1296. PMID: 16428778, PMCID: PMC1360368, DOI: 10.1128/iai.74.2.1284-1296.2006.Peer-Reviewed Original ResearchConceptsHLA-DQ8 transgenic miceStaphylococcal enterotoxin BSystemic immune activationAirway inflammationIntranasal exposureTransgenic miceImmune activationIntranasal routeSuperantigen exotoxinsHLA class II transgenic miceHLA-DR3 transgenic miceMajor histocompatibility complex class IIBALB/c miceHistocompatibility complex class IIHLA-DR3 miceII transgenic miceInduces airway inflammationEosinophilic airway inflammationNeutrophilic airway inflammationEosinophilic inflammatory responseStreptococcal pyrogenic exotoxinMurine major histocompatibility complex class IIAirway destructionSerious infectionsC miceInterferon-producing killer dendritic cells provide a link between innate and adaptive immunity
Chan C, Crafton E, Fan H, Flook J, Yoshimura K, Skarica M, Brockstedt D, Dubensky T, Stins M, Lanier L, Pardoll D, Housseau F. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nature Medicine 2006, 12: 207-213. PMID: 16444266, DOI: 10.1038/nm1352.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsAntigen PresentationCell Line, TumorCytotoxicity, ImmunologicDendritic CellsGene ExpressionImmunity, InnateIn Vitro TechniquesInterferonsKiller Cells, NaturalListeria monocytogenesMiceMice, Inbred BALB CMice, Inbred C57BLMice, Inbred DBAMice, KnockoutMice, TransgenicOligodeoxyribonucleotidesConceptsInterferon-producing killer dendritic cellsDendritic cellsKiller dendritic cellsI interferonNK cellsAdaptive immunityAntigen-presenting cell activityMajor histocompatibility complex class IISurface major histocompatibility complex class IIHistocompatibility complex class IIClassical NK cellsPlasmacytoid dendritic cellsTarget cellsAntigen-presenting activityConventional dendritic cellsNatural killer cellsNK target cellsToll-like receptorsType I interferonNK functionLymph nodesNKG2D receptorKiller cellsCostimulatory moleculesCytolytic capacity
2004
Paradoxical effects of interleukin-18 on the severity of acute graft-versus-host disease mediated by CD4+ and CD8+ T-cell subsets after experimental allogeneic bone marrow transplantation
Min C, Maeda Y, Lowler K, Liu C, Clouthier S, Lofthus D, Weisiger E, Ferrara J, Reddy P. Paradoxical effects of interleukin-18 on the severity of acute graft-versus-host disease mediated by CD4+ and CD8+ T-cell subsets after experimental allogeneic bone marrow transplantation. Blood 2004, 104: 3393-3399. PMID: 15280194, DOI: 10.1182/blood-2004-02-0763.Peer-Reviewed Original ResearchMeSH KeywordsAcute DiseaseAnimalsAntibodies, MonoclonalApoptosisBone Marrow TransplantationCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCytokinesDisease Models, AnimalFemaleGraft vs Host DiseaseHistocompatibility Antigens Class IHistocompatibility Antigens Class IIInterleukin-18Interleukin-18 Receptor alpha SubunitMiceMice, Inbred C57BLReceptors, InterleukinReceptors, Interleukin-18Severity of Illness IndexT-Lymphocytes, CytotoxicTransplantation, HomologousConceptsAllogeneic bone marrow transplantationBone marrow transplantationExperimental allogeneic bone marrow transplantationDonor T cellsIL-18T cellsAcute GVHDAcute graftHost diseaseInterleukin-18Marrow transplantationClinical allogeneic bone marrow transplantationMajor histocompatibility complex class IIHistocompatibility complex class IIEndogenous IL-18Experimental acute graftT cell subsetsParadoxical effectFas-dependent mannerLess GVHDCytotoxic functionHistopathologic parametersGVHDClass IIFAS expressionLeishmanial Amastigote Antigen P‐2 Induces Major Histocompatibility Complex Class II‐Dependent Natural Killer‐Cell Reactivity in Cells from Healthy Donors
Nylén S, Maasho K, McMahon‐Pratt D, Akuffo H. Leishmanial Amastigote Antigen P‐2 Induces Major Histocompatibility Complex Class II‐Dependent Natural Killer‐Cell Reactivity in Cells from Healthy Donors. Scandinavian Journal Of Immunology 2004, 59: 294-304. PMID: 15030581, DOI: 10.1111/j.0300-9475.2004.01388.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, ProtozoanCD8-Positive T-LymphocytesFetal BloodHistocompatibility Antigens Class IIHumansInterferon-gammaInterleukin-10Killer Cells, NaturalLeishmaniaLeishmaniasisLymphocyte ActivationProtozoan VaccinesReceptors, IgGReverse Transcriptase Polymerase Chain ReactionRNA, MessengerConceptsHealthy donorsLeishmaniasis patientsAmerican cutaneous leishmaniasis patientsClass IIMajor histocompatibility complex class IIMajor histocompatibility complex classHistocompatibility complex class IIClass II antibodiesCutaneous leishmaniasis patientsInterleukin-10 productionNatural killer cellsProtective immune responseInterferon-gamma productionIFN-gamma responsesMHC class IIHistocompatibility complex classHealthy adult donorsDevelopment of vaccinesAdherent cell populationAmastigote antigensNatural killerKiller cellsCytokine productionCell reactivityLeishmania infection
2003
Impaired thymic negative selection causes autoimmune graft-versus-host disease
Teshima T, Reddy P, Liu C, Williams D, Cooke K, Ferrara J. Impaired thymic negative selection causes autoimmune graft-versus-host disease. Blood 2003, 102: 429-435. PMID: 12663438, DOI: 10.1182/blood-2003-01-0266.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsAutoimmune DiseasesBone Marrow TransplantationCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCells, CulturedClonal DeletionDendritic CellsEpithelial CellsFemaleGraft vs Host DiseaseInflammation MediatorsInterleukin-1MiceMice, Inbred C57BLRadiation ChimeraRadiation ToleranceSelf ToleranceSkinSpleenThymectomyThymus GlandT-Lymphocyte SubsetsTumor Necrosis Factor-alphaVisceraConceptsThymic negative selectionSystemic autoimmune diseaseAntigen-presenting cellsAutoimmune diseasesHost diseaseT cellsAutoreactive T cell repertoireClass IIThymic antigen-presenting cellsMajor histocompatibility complex class IIHistocompatibility complex class IIImpaired negative selectionLethal autoimmune diseaseBone marrow chimerasPeripheral regulatory mechanismsT cell repertoireMHC class IIMHC class INegative selectionAcute graftAcute GVHDAutoimmune graftPeripheral CD4Adoptive transferNaive mice
1996
Downregulation of IL‐10 secretion and enhanced antigen‐presenting abilities following HTLV‐I infection of T cells
Scholz C, Hafler DA, Höllsberg P. Downregulation of IL‐10 secretion and enhanced antigen‐presenting abilities following HTLV‐I infection of T cells. Journal Of Neuroscience Research 1996, 45: 786-794. PMID: 8892090, DOI: 10.1002/(sici)1097-4547(19960915)45:6<786::aid-jnr15>3.0.co;2-u.Peer-Reviewed Original ResearchConceptsT cell clonesAntigen-presenting abilityHTLV-I infectionT cellsUninfected T cellsIL-10Immunosuppressive cytokine IL-10Human T-cell lymphotropic virus type ICD8 T cell proliferationMajor histocompatibility complex class IIPeripheral blood T cellsSpecific T cell clonesHistocompatibility complex class IILymphotropic virus type IGeneral immune activationHTLV-I myelopathySoluble peptide antigenCytokine IL-10IL-10 secretionEpstein-Barr virusAntigen-presenting cellsBlood T cellsInterferon-gamma secretionBest antigen-presenting cellsCytotoxic T cells
1994
Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones.
Wucherpfennig KW, Sette A, Southwood S, Oseroff C, Matsui M, Strominger JL, Hafler DA. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. Journal Of Experimental Medicine 1994, 179: 279-290. PMID: 7505801, PMCID: PMC2191316, DOI: 10.1084/jem.179.1.279.Peer-Reviewed Original ResearchConceptsT cell clonesMyelin basic proteinMultiple sclerosisCell clonesT cellsImmunodominant myelin basic protein peptideMBP-reactive T cellsMajor histocompatibility complex class IIDR2 haplotypeHistocompatibility complex class IIImmunodominant T cell epitopesHuman T cell clonesAutoreactive T cellsReactive T cellsT cell epitopesMyelin basic protein peptideT cell stimulationT cell receptorMS patientsDRB1 moleculesDR2 antigenRestriction elementsCell epitopesTarget antigenClass II
1992
Molecular regulation of tumor necrosis factor-alpha and lymphotoxin production in T cells. Inhibition by prostaglandin E2.
Ferreri NR, Sarr T, Askenase PW, Ruddle NH. Molecular regulation of tumor necrosis factor-alpha and lymphotoxin production in T cells. Inhibition by prostaglandin E2. Journal Of Biological Chemistry 1992, 267: 9443-9449. PMID: 1533632, DOI: 10.1016/s0021-9258(19)50443-4.Peer-Reviewed Original ResearchConceptsTNF-alphaProstaglandin E2T cell clonesT cellsTumor necrosisLymphotoxin productionLT productionMajor histocompatibility complex class IIHistocompatibility complex class IICell clonesPresence of PGE2M prostaglandin E2Dose-dependent mannerPGF2 alphaSoluble concanavalin ALeukotriene C4Murine Th1Inhibited productionClass IIFibrosarcoma cell lineInhibitory effectMurine fibrosarcoma cell lineBiological activityConcanavalin ACell lines
1991
Gamma-interferon induces differential expression of HLA-DR, -DP and -DQ in human ciliary epithelial cells
Helbig H, Kittredge K, Palestine A, Coca-Prados M, Nussenblatt R. Gamma-interferon induces differential expression of HLA-DR, -DP and -DQ in human ciliary epithelial cells. Graefe's Archive For Clinical And Experimental Ophthalmology 1991, 229: 191-194. PMID: 1904385, DOI: 10.1007/bf00170556.Peer-Reviewed Original ResearchConceptsMHC-II expressionHLA-DRGamma-IFNHLA-DQCiliary epithelial cellsGamma interferonOcular cellsClass IIMajor histocompatibility complex class IIBone marrow-derived cellsHistocompatibility complex class IICiliary epitheliumImmune suppressor genesEpithelial cellsHuman non-pigmented ciliary epithelial cellsAntigen-specific activationT helper lymphocytesMarrow-derived cellsCultured human non-pigmented ciliary epithelial cellsMHC class IIMeans of immunohistochemistryPresentation of antigensHuman MHC IIHuman ciliary epithelial cellsImmune response genesDifferential expression of HLA DR, DP and DQ in cultivated, human ciliary body epithelial cells.
Helbig H, Kittredge K, Coca-Prados M, Nussenblatt R. Differential expression of HLA DR, DP and DQ in cultivated, human ciliary body epithelial cells. Die Ophthalmologie 1991, 88: 295-8. PMID: 1889783.Peer-Reviewed Original ResearchConceptsHLA-DRMHC-IIGamma-IFNHLA-DQClass IIMajor histocompatibility complex class IIHistocompatibility complex class IICiliary epitheliumEpithelial cellsHuman non-pigmented ciliary epithelial cellsT helper lymphocytesAntigen-specific activationMHC-II expressionCultured human non-pigmented ciliary epithelial cellsMHC class IIMeans of immunohistochemistryPresentation of antigensHuman MHC IINon-pigmented ciliary epithelial cellsOcular autoimmunityUveitic eyesCiliary epithelial cellsCiliary body epithelial cellsLymphoid cellsDifferential expression
1987
Lymphocyte subsets differentially induce class II human leukocyte antigens on allogeneic microvascular endothelial cells.
Pardi R, Bender J, Engleman E. Lymphocyte subsets differentially induce class II human leukocyte antigens on allogeneic microvascular endothelial cells. The Journal Of Immunology 1987, 139: 2585-92. PMID: 3116086, DOI: 10.4049/jimmunol.139.8.2585.Peer-Reviewed Original ResearchConceptsClass II human leukocyteMicrovascular endothelial cellsEndothelial cellsT cellsAllogeneic T cell proliferationMajor histocompatibility complex class IIHuman leukocytesHistocompatibility complex class IILymphocyte-EC adhesionT-cell surface antigensNatural killer cellsT cell proliferationHost immune responseHuman microvascular endothelial cellsCell surface antigensAcute rejectionAntilymphocyte antibodiesGraft alloantigensLymphocyte subsetsAllogeneic lymphocytesAllograft rejectionLymphocyte subpopulationsKiller cellsAutologous monocytesCD18 antibody
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply