2022
The telomere maintenance mechanism spectrum and its dynamics in gliomas
Kim S, Chowdhury T, Yu H, Kahng J, Lee C, Choi S, Kim K, Kang H, Lee J, Lee S, Won J, Kim K, Kim M, Lee J, Kim J, Kim Y, Kim T, Choi S, Phi J, Shin Y, Ku J, Lee S, Yun H, Lee H, Kim D, Kim K, Hur J, Park S, Kim S, Park C. The telomere maintenance mechanism spectrum and its dynamics in gliomas. Genome Medicine 2022, 14: 88. PMID: 35953846, PMCID: PMC9367055, DOI: 10.1186/s13073-022-01095-x.Peer-Reviewed Original ResearchConceptsTERT promoter mutationsTelomere maintenance mechanismTelomerase activityGlioma samplesTERT expressionPromoter mutationsCancer management strategiesSlow growth potentialC-circle assayCancer cell immortalityGlioma patientsSeparate cohortNegative groupGlioma progressionNanoString analysisTumor tissueTelomerase enzyme activityGliomasTumor cellsConclusionsThis studyALTATRX mutationsTelomerase activationATRX lossConsiderable proportionGlioma progression is shaped by genetic evolution and microenvironment interactions
Varn F, Johnson K, Martinek J, Huse J, Nasrallah M, Wesseling P, Cooper L, Malta T, Wade T, Sabedot T, Brat D, Gould P, Wöehrer A, Aldape K, Ismail A, Sivajothi S, Barthel F, Kim H, Kocakavuk E, Ahmed N, White K, Datta I, Moon H, Pollock S, Goldfarb C, Lee G, Garofano L, Anderson K, Nehar-Belaid D, Barnholtz-Sloan J, Bakas S, Byrne A, D’Angelo F, Gan H, Khasraw M, Migliozzi S, Ormond D, Paek S, Van Meir E, Walenkamp A, Watts C, Weiss T, Weller M, Palucka K, Stead L, Poisson L, Noushmehr H, Iavarone A, Verhaak R, Consortium T, Varn F, Johnson K, Martinek J, Huse J, Nasrallah M, Wesseling P, Cooper L, Malta T, Wade T, Sabedot T, Brat D, Gould P, Wöehrer A, Aldape K, Ismail A, Sivajothi S, Barthel F, Kim H, Kocakavuk E, Ahmed N, White K, Datta I, Moon H, Pollock S, Goldfarb C, Lee G, Garofano L, Anderson K, Nehar-Belaid D, Barnholtz-Sloan J, Bakas S, Byrne A, D’Angelo F, Gan H, Khasraw M, Migliozzi S, Ormond D, Paek S, Van Meir E, Walenkamp A, Watts C, Weiss T, Weller M, Alfaro K, Amin S, Ashley D, Bock C, Brodbelt A, Bulsara K, Castro A, Connelly J, Costello J, de Groot J, Finocchiaro G, French P, Golebiewska A, Hau A, Hong C, Horbinski C, Kannan K, Kouwenhoven M, Lasorella A, LaViolette P, Ligon K, Lowman A, Mehta S, Miletic H, Molinaro A, Ng H, Niclou S, Niers J, Phillips J, Rabadan R, Rao G, Reifenberger G, Sanai N, Short S, Smitt P, Sloan A, Smits M, Snyder J, Suzuki H, Tabatabai G, Tanner G, Tomaszewski W, Wells M, Westerman B, Wheeler H, Xie J, Yung W, Zadeh G, Zhao J, Palucka K, Stead L, Poisson L, Noushmehr H, Iavarone A, Verhaak R. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell 2022, 185: 2184-2199.e16. PMID: 35649412, PMCID: PMC9189056, DOI: 10.1016/j.cell.2022.04.038.Peer-Reviewed Original ResearchConceptsSpecific ligand-receptor interactionsMicroenvironment interactionsDNA sequencing dataGlioma progressionLigand-receptor interactionsNeoplastic cellsSignaling programsCell statesSequencing dataGenetic evolutionGenetic changesIDH wild-type tumorsIsocitrate dehydrogenaseMesenchymal transitionSomatic alterationsDistinct mannerActive tumor growthIDH-mutant gliomasPotential targetTherapy resistanceAdult patientsDisease progressionPossible roleCellsTumor growth
2016
miR-182-5p Induced by STAT3 Activation Promotes Glioma Tumorigenesis
Xue J, Zhou A, Wu Y, Morris S, Lin K, Amin S, Verhaak R, Fuller G, Xie K, Heimberger A, Huang S. miR-182-5p Induced by STAT3 Activation Promotes Glioma Tumorigenesis. Cancer Research 2016, 76: 4293-4304. PMID: 27246830, PMCID: PMC5033679, DOI: 10.1158/0008-5472.can-15-3073.Peer-Reviewed Original ResearchConceptsProtocadherin-8Glioma tumorigenesisProtein-coding genesMiRNA gene transcriptionCandidate target genesExpression of STAT3Gene transcriptionBioinformatics analysisTarget genesSTAT3/miRSTAT3 knockdownPCDH8 expressionSTAT3 inhibitorAberrant activationGlioblastoma tissuesSTAT3Expression levelsInvasive capacityTranscriptionTumorigenesisGlioma progressionGenesCritical roleKnockdownP-STAT3
2015
Silence of MACC1 expression by RNA interference inhibits proliferation, invasion and metastasis, and promotes apoptosis in U251 human malignant glioma cells
SUN L, LI G, DAI B, TAN W, ZHAO H, LI X, WANG A. Silence of MACC1 expression by RNA interference inhibits proliferation, invasion and metastasis, and promotes apoptosis in U251 human malignant glioma cells. Molecular Medicine Reports 2015, 12: 3423-3431. PMID: 26043756, PMCID: PMC4526050, DOI: 10.3892/mmr.2015.3886.Peer-Reviewed Original ResearchConceptsShort hairpin RNAFluorescence-activated cell sortingInhibition of cell proliferationRNA interferenceCell invasionCell apoptosisCell proliferationPhase cell cycle arrestG0/G1 phase cell cycle arrestCell cycle arrestEnhancement of apoptosisExpression levelsInhibition of cell invasionGlioma cellsHuman malignant glioma cellsHuman glioma progressionExpression levels of MACC1MACC1 silencingColony formGlioma progressionCycle arrestCaspase-3Genetic therapeutic strategiesExpression silencingGlioma cell proliferation
2005
Novel Tumor-Specific Isoforms of BEHAB/Brevican Identified in Human Malignant Gliomas
Viapiano MS, Bi WL, Piepmeier J, Hockfield S, Matthews RT. Novel Tumor-Specific Isoforms of BEHAB/Brevican Identified in Human Malignant Gliomas. Cancer Research 2005, 65: 6726-6733. PMID: 16061654, DOI: 10.1158/0008-5472.can-05-0585.Peer-Reviewed Original ResearchConceptsBEHAB/brevicanHigh-grade gliomasMalignant gliomasBrain tumorsNew potential therapeutic targetsPrimary brain tumorsNormal adult brainDeadly brain tumorCentral nervous systemPotential therapeutic targetLow-grade gliomasHuman malignant gliomasNew therapeutic strategiesPathologic courseSimilar histologyBenign gliomasAdult brainTherapeutic strategiesDiffuse invasionTherapeutic targetGlioma progressionNervous systemInvasive abilityBrain tissueGliomas
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply