2024
Rare Drivers at Low Prevalence with High Cancer Effects in T-Cell and B-Cell Pediatric Acute Lymphoblastic Leukemia
Mandell J, Diviti S, Xu M, Townsend J. Rare Drivers at Low Prevalence with High Cancer Effects in T-Cell and B-Cell Pediatric Acute Lymphoblastic Leukemia. International Journal Of Molecular Sciences 2024, 25: 6589. PMID: 38928295, PMCID: PMC11203805, DOI: 10.3390/ijms25126589.Peer-Reviewed Original ResearchGenomic analysisPediatric acute lymphoblastic leukemiaCancer effectsAcute lymphoblastic leukemiaT cellsTherapeutic targetSomatic substitutionsRare driversB-ALLLymphoblastic leukemiaEpistatic effectsT-cell ALL patientsMutational contributionsMutated genesCancer phenotypeMutated formDevelopment of leukemiaLow prevalenceB-cell lineageDisease mechanismsMutationsPrecision therapeuticsTherapeutic opportunitiesT-ALLALL patients
2021
Targeting Pyruvate Kinase M2 Phosphorylation Reverses Aggressive Cancer Phenotypes
Apostolidi M, Vathiotis IA, Muthusamy V, Gaule P, Gassaway BM, Rimm DL, Rinehart J. Targeting Pyruvate Kinase M2 Phosphorylation Reverses Aggressive Cancer Phenotypes. Cancer Research 2021, 81: 4346-4359. PMID: 34185676, PMCID: PMC8373815, DOI: 10.1158/0008-5472.can-20-4190.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell NucleusAnimalsBiomarkers, TumorCarrier ProteinsCell Line, TumorCollagenCyclic N-OxidesDrug CombinationsGenome, HumanHumansIndolizinesLamininMCF-7 CellsMembrane ProteinsMiceNeoplasm InvasivenessNeoplasm TransplantationNeoplasmsOxidation-ReductionPhenotypePhosphorylationProtein IsoformsProteoglycansProteomicsPyridazinesPyridinium CompoundsPyrrolesPyruvate KinaseThyroid HormonesTriple Negative Breast NeoplasmsConceptsTriple-negative breast cancerPyruvate kinase M2TEPP-46Breast cancerAggressive breast cancer cell phenotypesCharacteristic nuclear staining patternAggressive breast cancer subtypeAggressive breast cancer phenotypeBreast cancer cell phenotypeCDK inhibitor dinaciclibCombination of dinaciclibLack of biomarkersEffective therapeutic approachBreast cancer phenotypeBreast cancer subtypesCancer phenotypePhosphorylation of PKM2Cyclin-dependent kinase (CDK) pathwayMouse xenograft modelAggressive cancer phenotypeNuclear staining patternLower survival rateImpaired redox balancePrognostic valueCancer cell phenotype
2019
Clinical features and cancer risk in families with pathogenic CDH1 variants irrespective of clinical criteria
Xicola RM, Li S, Rodriguez N, Reinecke P, Karam R, Speare V, Black MH, LaDuca H, Llor X. Clinical features and cancer risk in families with pathogenic CDH1 variants irrespective of clinical criteria. Journal Of Medical Genetics 2019, 56: 838-843. PMID: 31296550, DOI: 10.1136/jmedgenet-2019-105991.Peer-Reviewed Original ResearchConceptsHereditary diffuse gastric cancerPathogenic variant carriersBreast cancerGastric cancerClinical criteriaCancer riskVariant carriersMultigene panel testingCancer genetics programCancer phenotypePathogenic CDH1 variantsGastric cancer riskBreast cancer familiesDiffuse gastric cancerCancer risk estimationGenotype-phenotype correlationClinical featuresCumulative cancer riskHDGC criteriaCumulative riskAge 80CDH1 variantsPanel testingClinical phenotypePathogenic variantsAPOBEC-induced mutations and their cancer effect size in head and neck squamous cell carcinoma
Cannataro VL, Gaffney SG, Sasaki T, Issaeva N, Grewal NKS, Grandis JR, Yarbrough WG, Burtness B, Anderson KS, Townsend JP. APOBEC-induced mutations and their cancer effect size in head and neck squamous cell carcinoma. Oncogene 2019, 38: 3475-3487. PMID: 30647454, PMCID: PMC6499643, DOI: 10.1038/s41388-018-0657-6.Peer-Reviewed Original ResearchConceptsPositive selectionCancer phenotypeStrong positive selectionIntensity of selectionEffects of mutationsBasis of mutationsSomatic genetic variantsSomatic evolutionNeutral driftMutational processesAPOBEC mutagenesisBiochemical experimentsSelection intensityMolecular understandingCytosine basesIndividual substitutionsAPOBEC3B proteinMutant stateMutational signaturesGenetic variantsNeck squamous cell carcinomaMutationsE545KGene variantsPhenotypep53-Pirh2 Complex Promotes Twist1 Degradation and Inhibits EMT
Yang-Hartwich Y, Tedja R, Roberts C, Goodner-Bingham J, Cardenas C, Gurea M, Sumi NJ, Alvero AB, Glackin CA, Mor G. p53-Pirh2 Complex Promotes Twist1 Degradation and Inhibits EMT. Molecular Cancer Research 2019, 17: molcanres.0238.2018. PMID: 30131448, PMCID: PMC6800184, DOI: 10.1158/1541-7786.mcr-18-0238.Peer-Reviewed Original ResearchConceptsEpithelial-mesenchymal transitionTwist1 degradationInvasive cancer phenotypeEMT-inducing transcription factorsAbility of p53Tumor suppressor geneTumor cell invasivenessWild-type p53Proteasomal degradationTranscription factorsTwist1 proteinSuppressor geneEpithelial phenotypeInhibits epithelial-mesenchymal transitionCancer phenotypeMolecular levelCell invasivenessCancer progressionCancer metastasisWt p53Twist1P53Metastatic processTumor progressionNew insights
2016
Defining the polyposis/colorectal cancer phenotype associated with the Ashkenazi GREM1 duplication: counselling and management recommendations
ZIAI J, MATLOFF E, CHOI J, KOMBO N, MATERIN M, BALE AE. Defining the polyposis/colorectal cancer phenotype associated with the Ashkenazi GREM1 duplication: counselling and management recommendations. Genetics Research 2016, 98: e5. PMID: 26947005, PMCID: PMC6865171, DOI: 10.1017/s0016672316000021.Peer-Reviewed Original ResearchConceptsMixed polyposisExtensive genetic testingComprehensive clinical evaluationColorectal cancer phenotypeCancer phenotypeHereditary colon cancerAutosomal dominant conditionClinical evaluationAshkenazi patientsColon cancer phenotypeColon cancerJuvenile polypsJewish patientsAshkenazi Jewish familiesGenetic testingPolyposisPatientsDominant conditionColon cancer genesPrevious reportsPhenotypeCancer genesManagement recommendations
2015
Cooperation between Noncanonical Ras Network Mutations
Stites E, Trampont P, Haney L, Walk S, Ravichandran K. Cooperation between Noncanonical Ras Network Mutations. Cell Reports 2015, 10: 307-316. PMID: 25600866, PMCID: PMC4503519, DOI: 10.1016/j.celrep.2014.12.035.Peer-Reviewed Original ResearchCollection of mutationsRAS pathway mutationsRas signaling networkGenomic data setsPathway mutationsTumor suppressor gene NF1Combinations of mutationsRandom mutagenesisRas mutantsNetwork genesSignaling networksGene NF1Genomic instabilityCancer phenotypeNF1 mutationsMutationsPromote cancerRasMutated cancersIncreased co-occurrenceMutantsMutagenesisGenesPhenotypeNF1
2012
Phenotype diversity in type 1 Gaucher disease: discovering the genetic basis of Gaucher disease/hematologic malignancy phenotype by individual genome analysis
Lo SM, Choi M, Liu J, Jain D, Boot RG, Kallemeijn WW, Aerts JM, Pashankar F, Kupfer GM, Mane S, Lifton RP, Mistry PK. Phenotype diversity in type 1 Gaucher disease: discovering the genetic basis of Gaucher disease/hematologic malignancy phenotype by individual genome analysis. Blood 2012, 119: 4731-4740. PMID: 22493294, PMCID: PMC3367875, DOI: 10.1182/blood-2011-10-386862.Peer-Reviewed Original ResearchConceptsGenome analysisGenetic basisCancer phenotypeWhole exome captureNovel mutationsGenomic analysisPhenotype annotationsPhenotype diversityParallel sequencingHomozygosity mappingT-cell acute lymphoblastic lymphomaGenetic modifiersNovel insightsGene sequencingGaucher diseaseMalignancy phenotypeMutationsLysosomal accumulationPhenotypeHomozygous novel mutationPathogenic mutationsGenesMSH6 proteinsSequencingEnzyme studies
2011
Mitochondrial Genome Instability and ROS Enhance Intestinal Tumorigenesis in APCMin/+ Mice
Woo DK, Green PD, Santos JH, D'Souza AD, Walther Z, Martin WD, Christian BE, Chandel NS, Shadel GS. Mitochondrial Genome Instability and ROS Enhance Intestinal Tumorigenesis in APCMin/+ Mice. American Journal Of Pathology 2011, 180: 24-31. PMID: 22056359, PMCID: PMC3338350, DOI: 10.1016/j.ajpath.2011.10.003.Peer-Reviewed Original ResearchConceptsMitochondrial genome instabilityGenome instabilityMtDNA instabilityMaintenance of mtDNAMitochondrial transcription factor AMitochondrial dysfunctionIntestinal tumorigenesisTranscription factor AWnt/β-catenin signalingMitochondrial oxidative phosphorylationMitochondrial ROS productionΒ-catenin signalingOxidative mtDNA damageReactive oxygen species productionMitochondrial DNAOxygen species productionMouse cellsOxidative phosphorylationOvert phenotypeMitochondrial ROSMtDNA damageMtDNA depletionCancer phenotypeAltered amountsTumorigenesisMechanistic modeling to investigate signaling by oncogenic Ras mutants
Stites E, Ravichandran K. Mechanistic modeling to investigate signaling by oncogenic Ras mutants. WIREs Mechanisms Of Disease 2011, 4: 117-127. PMID: 21766467, DOI: 10.1002/wsbm.156.Peer-Reviewed Original ResearchConceptsCell signaling networksSignaling networksCancer phenotypeMutant Ras signalingAcquisition of mutationsRas signalingCell signalingBiochemistry of proteinsLevel of signalMutated genesExpression levelsBiochemical reaction mechanismsPhenotypeMechanistic modelInvestigated signalSignalGenesMutationsRasProteinCancerIndividual reactionsExpression
2010
Higher parity and shorter breastfeeding duration
Shinde SS, Forman MR, Kuerer HM, Yan K, Peintinger F, Hunt KK, Hortobagyi GN, Pusztai L, Symmans WF. Higher parity and shorter breastfeeding duration. Cancer 2010, 116: 4933-4943. PMID: 20665494, DOI: 10.1002/cncr.25443.Peer-Reviewed Original ResearchConceptsTriple-negative BCInvasive breast cancerDuration of breastfeedingBreast cancer phenotypeHigher parityOdds ratioBreast cancerTriple-negative breast cancer (TNBC) phenotypeConsecutive case seriesMultivariate logistic regressionConfidence intervalsAfrican American ethnicityCancer phenotypeShort durationCase seriesFamily historyNegative BCProgenitor cell populationsYounger ageLogistic regressionBreastfeedingAmerican ethnicityDemographic informationCell populationsAgeSusceptibility Genetic Variants Associated With Colorectal Cancer Risk Correlate With Cancer Phenotype
Abulí A, Bessa X, González JR, Ruiz–Ponte C, Cáceres A, Muñoz J, Gonzalo V, Balaguer F, Fernández–Rozadilla C, González D, de Castro L, Clofent J, Bujanda L, Cubiella J, Reñé J, Morillas JD, Lanas Á, Rigau J, García A, Latorre M, Saló J, Bañares F, Argüello L, Peña E, Vilella À, Riestra S, Carreño R, Paya A, Alenda C, Xicola RM, Doyle BJ, Jover R, Llor X, Carracedo A, Castells A, Castellví–Bel S, Andreu M, Association G. Susceptibility Genetic Variants Associated With Colorectal Cancer Risk Correlate With Cancer Phenotype. Gastroenterology 2010, 139: 788-796.e6. PMID: 20638935, DOI: 10.1053/j.gastro.2010.05.072.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overCell DifferentiationChromosomes, Human, Pair 16Chromosomes, Human, Pair 8Colorectal NeoplasmsFemaleGene Expression Regulation, NeoplasticGene FrequencyGenetic Association StudiesGenetic Predisposition to DiseaseHumansLogistic ModelsMaleMiddle AgedNeoplasm StagingOdds RatioPedigreePhenotypePolymorphism, Single NucleotideProspective StudiesReproducibility of ResultsRisk AssessmentRisk FactorsSpainConceptsCRC phenotypeColorectal cancer riskPopulation-based cohortAdvanced stage tumorsCancer phenotypeGenetic variantsCRC managementSpanish cohortColorectal adenomasCancer riskFamilial historyG allelePatientsC alleleGenetic Variants AssociatedPrevention programsSurveillance strategiesAbstractTextLogistic regressionRisk correlatesCRCAIMSReplication setCohortVariants Associated
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply