2017
Analysis of RNA-protein interactions in vertebrate embryos using UV crosslinking approaches
Despic V, Dejung M, Butter F, Neugebauer KM. Analysis of RNA-protein interactions in vertebrate embryos using UV crosslinking approaches. Methods 2017, 126: 44-53. PMID: 28734934, DOI: 10.1016/j.ymeth.2017.07.013.Peer-Reviewed Original ResearchConceptsNumber of RBPsRNA-protein interactionsUnique biological contextZebrafish Danio rerioRegulated gene expressionInteractome captureVertebrate embryosDanio rerioRNA-seqCellular RNAGene expressionBiological contextRBPsRNAProteinGenomeRerioCrosslinking approachOrganismsEmbryosMRNAAnnotationExpressionVast frontierVivoMicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos
Kasper DM, Moro A, Ristori E, Narayanan A, Hill-Teran G, Fleming E, Moreno-Mateos M, Vejnar CE, Zhang J, Lee D, Gu M, Gerstein M, Giraldez A, Nicoli S. MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos. Developmental Cell 2017, 40: 552-565.e5. PMID: 28350988, PMCID: PMC5404386, DOI: 10.1016/j.devcel.2017.02.021.Peer-Reviewed Original ResearchConceptsDevelopment of vertebratesEmbryonic blood vesselsVertebrate miRNAsMutant embryosVertebrate embryosHigher organismsMiRNAs functionVascular traitsTrait varianceUniform traitTissue developmentEnvironmental perturbationsSignaling pathwaysPhenotypic variabilityEmbryosPhenotypic heterogeneityOrganismsTraitsProper functioningVascular systemVertebratesMutagenesisMiRNAsMicroRNAsPhenotype
2013
A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development
Villefranc JA, Nicoli S, Bentley K, Jeltsch M, Zarkada G, Moore JC, Gerhardt H, Alitalo K, Lawson ND. A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development. Development 2013, 140: 1497-1506. PMID: 23462469, PMCID: PMC3596992, DOI: 10.1242/dev.084152.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsAnimals, Genetically ModifiedAutocrine CommunicationBlood VesselsCell MovementCodon, NonsenseEmbryo, NonmammalianFemaleLymphatic SystemMiceMice, KnockoutNeovascularization, PhysiologicParacrine CommunicationProtein IsoformsSignal TransductionVascular Endothelial Growth Factor CZebrafishZebrafish ProteinsConceptsMigratory persistenceLymphatic developmentSensitized genetic backgroundTip cell positionVascular endothelial growth factor CEndothelial cell dynamicsDeficient endothelial cellsFactor CTime-lapse analysisMutant embryosVertebrate embryosTruncation alleleEctopic blood vesselsFilopodia stabilityAngiogenesis defectsDistinct modesEndothelial cellsDevelopmental angiogenesisLymphatic vasculatureVascular developmentLymphatic defectsGenetic backgroundReceptor FLT4VEGFCCell positionRegulated tissue fluidity steers zebrafish body elongation
Lawton AK, Nandi A, Stulberg MJ, Dray N, Sneddon MW, Pontius W, Emonet T, Holley SA. Regulated tissue fluidity steers zebrafish body elongation. Development 2013, 140: 573-582. PMID: 23293289, PMCID: PMC3561786, DOI: 10.1242/dev.090381.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedBiomechanical PhenomenaBody PatterningCadherinsCell AdhesionCell CountCell MovementCell PolarityComputer SimulationEmbryo, NonmammalianEmbryonic DevelopmentFibroblast Growth FactorsGene Expression Regulation, DevelopmentalModels, BiologicalTailTime FactorsWnt Signaling PathwayZebrafishZebrafish Proteins
2012
Postembryonic neuronal addition in Zebrafish dorsal root ganglia is regulated by Notch signaling
McGraw HF, Snelson CD, Prendergast A, Suli A, Raible DW. Postembryonic neuronal addition in Zebrafish dorsal root ganglia is regulated by Notch signaling. Neural Development 2012, 7: 23. PMID: 22738203, PMCID: PMC3438120, DOI: 10.1186/1749-8104-7-23.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedGanglia, SpinalGene Expression Regulation, DevelopmentalHomeodomain ProteinsIntracellular Signaling Peptides and ProteinsMembrane ProteinsNerve Tissue ProteinsNeural CrestNeurogenesisNeuronsReceptor, Notch1Signal TransductionZebrafishZebrafish ProteinsConceptsLarval developmentNotch signalingDorsal root gangliaTransgenic zebrafish lineNeural crest migrationLate larval developmentNeural crest cellsFate-mapping experimentsNeuronal additionVertebrate embryosZebrafish lineCellular regulationCrest migrationProgenitor populationsCrest cellsDRG formationRoot gangliaNew neuronsConditional inhibitionProgenitor cellsSignalingDRG neuronsSensory neuronsPopulation of residentsNeuronsClonally dominant cardiomyocytes direct heart morphogenesis
Gupta V, Poss KD. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 2012, 484: 479-484. PMID: 22538609, PMCID: PMC3340018, DOI: 10.1038/nature11045.Peer-Reviewed Original ResearchConceptsStem cell populationVertebrate embryosVertebrate organsNew lineageClonal dominanceEmbryonic structuresClonal analysisTissue architectureCell populationsProliferative behaviorIndividual cardiomyocytesAdult formKey mechanismCardiomyocytesAdult cardiac structureCirculatory needsMorphogenesisLineagesEmbryosMaturesDominanceOrgansVariable sizeThick wallsLateral expansion
2010
Caveolin-1 regulates dorsoventral patterning through direct interaction with β-catenin in zebrafish
Mo S, Wang L, Li Q, Li J, Li Y, Thannickal V, Cui Z. Caveolin-1 regulates dorsoventral patterning through direct interaction with β-catenin in zebrafish. Developmental Biology 2010, 344: 210-223. PMID: 20452340, DOI: 10.1016/j.ydbio.2010.04.033.Peer-Reviewed Original ResearchConceptsZebrafish embryogenesisDorsoventral patterningCav-1Caveolin-1Dorsal organizer formationPlasma membrane caveolaeWnt/beta-catenin pathwayEarly vertebrate embryosNuclear translocationBeta-catenin pathwayCav-1 functionCav-1 proteinVentralizing activityVertebrate embryosBMP signalsDorsal genesOrganizer formationMembrane caveolaeCav-1 knockdownEmbryonic developmentEctopic expressionTranscriptional expressionCanonical WntDorsal activityΒ-cateninRegulation of blood vessel patterning and guidance
Eichmann A. Regulation of blood vessel patterning and guidance. The FASEB Journal 2010, 24: 62.3-62.3. DOI: 10.1096/fasebj.24.1_supplement.62.3.Peer-Reviewed Original ResearchVertebrate embryonic developmentBlood vessel patterningLigand-receptor interactionsKey ligand-receptor interactionsVertebrate embryosVessel patterningZebrafish embryosPrimitive tubeGrowth factor gradientsEmbryonic developmentMesodermal cellsMajor axial vesselsMolecular mechanismsStereotyped architectureVascular developmentVascular systemSimilar branching patternsFactor gradientsCardinal veinEmbryosPrimitive vesselsBranched networkPattern formationEndothelial cellsHemodynamic forces
2002
Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development
Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E, Chen W, Burgess S, Haldi M, Artzt K, Farrington S, Lin S, Nissen R, Hopkins N. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nature Genetics 2002, 31: 135-140. PMID: 12006978, DOI: 10.1038/ng896.Peer-Reviewed Original ResearchConceptsEarly vertebrate developmentVertebrate developmentInsertion mutantsMutagenesis screenAmino acid sequenceDiversity of genesInsertional mutagenesis screenBiological role in vivoChemical mutagenesis screenDisrupted geneCellular functionsInsertional mutagenesisBiochemical functionsPleiotropic abnormalitiesEmbryonic phenotypeMutantsMutated alleleSpecies—andGenesVertebrate embryosDevelopmental defectsVertebratesSwimming behaviorZebrafishBody shape
1998
Zebrafish segmentation and pair‐rule patterning
van Eeden F, Holley S, Haffter P, Nüsslein‐Volhard C. Zebrafish segmentation and pair‐rule patterning. Genesis 1998, 23: 65-76. PMID: 9706695, DOI: 10.1002/(sici)1520-6408(1998)23:1<65::aid-dvg7>3.0.co;2-4.Peer-Reviewed Original ResearchConceptsDrosophila segment polarity geneSegment polarity genesPair-rule patterningParaxial mesodermZebrafish homologueSomite boundariesPolarity genesPair-rule gene hairyPair-rule genesPair-rule phenotypeWild-type embryosGroup of genesGroup of mutantsGenetic screenVertebrate embryosDouble mutantSomite formationZebrafish segmentationHairy phenotypeMutantsMesodermSonic hedgehogGenesHomologuesHER1 expression
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply