2010
Sodium channel expression and function in multiple sclerosis
Bangalore L, Black J, Carrithers M, Waxman S. Sodium channel expression and function in multiple sclerosis. 2010, 29-43. DOI: 10.1017/cbo9780511781698.005.Peer-Reviewed Original ResearchMultiple sclerosisRecovery of functionSodium channel expressionHealth care advisorsMechanisms of recoveryNeurorehabilitation programChannel expressionSpecific syndromesTherapeutic interventionsCare advisorsClinical rehabilitationEfficient therapySclerosisDisease mechanismsPatientsCliniciansNeurorehabilitationInterventionBasic scienceSocial participationPathophysiologySyndromeTherapyNeuroplasticity
2002
Primary motor neurons fail to up‐regulate voltage‐gated sodium channel Nav1.3/brain type III following axotomy resulting from spinal cord injury
Hains B, Black J, Waxman S. Primary motor neurons fail to up‐regulate voltage‐gated sodium channel Nav1.3/brain type III following axotomy resulting from spinal cord injury. Journal Of Neuroscience Research 2002, 70: 546-552. PMID: 12404508, DOI: 10.1002/jnr.10402.Peer-Reviewed Original ResearchConceptsSpinal cord injuryUpper motor neuronsPrimary motor cortexDorsal root gangliaMotor neuronsCord injuryMotor cortexRat primary motor cortexDorsal column transectionIpsilateral DRG neuronsCortical motor neuronsSciatic nerve transectionTraumatic head injuryFacial motor neuronsSodium channel expressionPrimary motor neuronsVoltage-gated sodium channelsPeripheral axotomyDRG neuronsNerve transectionLayer VControl brainsHead injuryRoot gangliaSpinal cord
2000
Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000.
Waxman S, Dib-Hajj S, Cummins T, Black J. Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states11Published on the World Wide Web on 15 August 2000. Brain Research 2000, 886: 5-14. PMID: 11119683, DOI: 10.1016/s0006-8993(00)02774-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsSodium channel gene expressionSodium channel geneChannel gene expressionChannel genesGene expressionPost-transcriptional levelNormal nervous systemSodium channel expressionSodium channelsChannel expressionMolecular plasticityGenesDynamic expressionCell membraneHypothalamic magnocellular neurosecretory neuronsDifferent repertoiresMultiple sclerosisNervous systemTherapeutic opportunitiesSodium channel subtypesExpressionElectrogenic propertiesRegulationChannel subtypesDysregulationSensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis
Black J, Dib-Hajj S, Baker D, Newcombe J, Cuzner M, Waxman S. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 11598-11602. PMID: 11027357, PMCID: PMC17246, DOI: 10.1073/pnas.97.21.11598.Peer-Reviewed Original ResearchConceptsExperimental allergic encephalomyelitisMultiple sclerosisAllergic encephalomyelitisClinical abnormalitiesChannel expressionPurkinje cellsTrigeminal ganglion neuronsBrains of micePeripheral nervous systemSodium channel expressionIon channel expressionCerebellar Purkinje cellsAbnormal repertoiresAxonal degenerationControl miceGanglion neuronsControl subjectsMouse modelNormal brainAnimal modelsNervous systemNeurological diseasesSodium channelsProtein expressionAbnormal patternsThe neuron as a dynamic electrogenic machine: modulation of sodiumchannel expression as a basis for functional plasticity in neurons
Waxman S. The neuron as a dynamic electrogenic machine: modulation of sodiumchannel expression as a basis for functional plasticity in neurons. Philosophical Transactions Of The Royal Society B Biological Sciences 2000, 355: 199-213. PMID: 10724456, PMCID: PMC1692729, DOI: 10.1098/rstb.2000.0559.Peer-Reviewed Original ResearchConceptsSodium channelsMammalian nervous systemSodium channel geneNervous systemDozen genesDistinct sodium channelsVoltage-gated sodium channelsGenesElectrogenic machineryNormal nervous systemSodium channel expressionFunctional plasticityMembrane of neuronsAction potential activityTranscriptionPathological insultsPhysiological inputsMost neuronsCrucial roleExpressionNeuronsFunctional propertiesElectroresponsive propertiesPotential activityMachineryVoltage-gated sodium channels and the molecular pathogenesis of pain: a review.
Waxman SG, Cummins TR, Dib-Hajj SD, Black JA. Voltage-gated sodium channels and the molecular pathogenesis of pain: a review. The Journal Of Rehabilitation Research And Development 2000, 37: 517-28. PMID: 11322150.Peer-Reviewed Original ResearchConceptsVoltage-gated sodium channelsDRG neuronsNervous systemSodium channelsDistinct voltage-gated sodium channelsAction potentialsSpinal sensory neuronsSodium channel expressionSpontaneous action potentialsDifferent sodium channelsSpecific sodium channelsUnderstanding of painHigh-frequency activityInflammatory painPain pathwaysChronic painNociceptive signalsPeripheral nervesSensory neuronsNew therapiesPainChannel expressionMolecular pathogenesisPharmacologic manipulationNeuron cell membraneSodium channels and the molecular pathophysiology of pain
Cummins T, Dib-Hajj S, Black J, Waxman S. Sodium channels and the molecular pathophysiology of pain. Progress In Brain Research 2000, 129: 3-19. PMID: 11098678, DOI: 10.1016/s0079-6123(00)29002-x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDorsal root gangliaTrigeminal neuronsSodium channelsAction potentialsDorsal root ganglion neuronsSpontaneous action potential activityMolecular pathophysiologyPrimary sensory neuronsPeripheral target tissuesAction potential activitySodium channel expressionChain of neuronsPathological burstingNerve injuryNociceptive pathwaysChronic painGanglion neuronsRoot gangliaSensory neuronsChannel expressionSomatosensory systemPainNeuronsTarget tissuesPathophysiology
1999
Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain
Dib-Hajj S, Fjell J, Cummins TR, Zheng Z, Fried K, LaMotte R, Black JA, Waxman S. Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain 1999, 83: 591-600. PMID: 10568868, DOI: 10.1016/s0304-3959(99)00169-4.Peer-Reviewed Original ResearchConceptsTTX-R sodium channelsChronic constriction injury modelDRG neuronsSodium currentSodium channelsNeuropathic painInjury modelAxotomized dorsal root ganglion (DRG) neuronsSmall-diameter DRG neuronsTTX-R sodium currentsDorsal root ganglion neuronsTTX-S currentsSodium channel expressionGanglion neuronsSciatic nerveChannel expressionSodium channel transcriptsNeuronsNa currentPainChannel transcriptsSignificant changesLevels of transcriptsHyperalgesiaPrevious studiesSodium channels, excitability of primary sensory neurons, and the molecular basis of pain
Waxman S, Cummins T, Dib‐Hajj S, Fjell J, Black J. Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. Muscle & Nerve 1999, 22: 1177-1187. PMID: 10454712, DOI: 10.1002/(sici)1097-4598(199909)22:9<1177::aid-mus3>3.0.co;2-p.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsPrimary sensory neuronsDRG neuronsSodium channel expressionSodium channel gene expressionSensory neuronsChannel gene expressionSodium channelsChannel expressionSodium currentTTX-sensitive sodium currentAbnormal burst activityNormal DRG neuronsSNS/PN3Resistant sodium currentsDistinct sodium channelsSodium channel geneChannel genesInflammatory painNerve injuryAxonal transectionElectrophysiological abnormalitiesSelective blockadePharmacological approachesBurst activityPainThe molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons
Waxman S. The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain 1999, 82: s133-s140. PMID: 10491982, DOI: 10.1016/s0304-3959(99)00147-5.Peer-Reviewed Original ResearchConceptsPrimary sensory neuronsSodium channel gene expressionChannel gene expressionSodium channel expressionDRG neuronsSensory neuronsSodium channelsAxonal injuryChannel expressionSmall dorsal root ganglion neuronsAbnormal expressionDorsal root ganglion neuronsMolecular pathophysiologySodium channel geneAbnormal burst activityMultiple sodium channelsSNS/PN3Inflammatory pain modelChannel genesDistinct sodium channelsSodium current expressionInflammatory painNerve injuryPain modelGanglion neuronsSodium channel expression in NGF‐overexpressing transgenic mice
Fjell J, Cummins T, Davis B, Albers K, Fried K, Waxman S, Black J. Sodium channel expression in NGF‐overexpressing transgenic mice. Journal Of Neuroscience Research 1999, 57: 39-47. PMID: 10397634, DOI: 10.1002/(sici)1097-4547(19990701)57:1<39::aid-jnr5>3.0.co;2-m.Peer-Reviewed Original ResearchConceptsNerve growth factorSodium channel expressionWild-type miceDRG neuronsTransgenic miceChannel expressionLevels of NGFDorsal root ganglion neuronsSNS/PN3Whole-cell patch-clamp studiesSmall DRG neuronsPeripheral nervous systemSodium channel mRNAFunctional sodium channelsPeak sodium current densityRegulation of expressionSodium current densityPatch-clamp studiesMechanical hyperalgesiaEmbryonic day 11Ganglion neuronsMouse DRGWild-type DRGsNervous systemLong-term overexpressionChanges in expression of voltage‐gated potassium channels in dorsal root ganglion neurons following axotomy
Ishikawa K, Tanaka M, Black J, Waxman S. Changes in expression of voltage‐gated potassium channels in dorsal root ganglion neurons following axotomy. Muscle & Nerve 1999, 22: 502-507. PMID: 10204786, DOI: 10.1002/(sici)1097-4598(199904)22:4<502::aid-mus12>3.0.co;2-k.Peer-Reviewed Original ResearchConceptsDorsal root ganglion neuronsDRG neuronsVoltage-gated potassium channelsAxonal injuryGanglion neuronsPotassium channelsChannel expressionNormal DRG neuronsChronic pain syndromeSodium channel expressionSpectrum of subtypesVoltage-gated sodium channelsSpecific potassium channelsPain syndromeDRG cellsAdult ratsNervous systemAxotomyKv expressionNeuronsImmunocytochemical methodsMolecular correlatesElectrical excitabilitySodium channelsImmunoreactivityIn Vivo NGF Deprivation Reduces SNS Expression and TTX-R Sodium Currents in IB4-Negative DRG Neurons
Fjell J, Cummins T, Fried K, Black J, Waxman S. In Vivo NGF Deprivation Reduces SNS Expression and TTX-R Sodium Currents in IB4-Negative DRG Neurons. Journal Of Neurophysiology 1999, 81: 803-810. PMID: 10036280, DOI: 10.1152/jn.1999.81.2.803.Peer-Reviewed Original ResearchConceptsTTX-R sodium currentsNerve growth factorPA/pFDRG neuronsHigh antibody titersSodium current densityNGF-deprived neuronsSodium currentAntibody titersAdult ratsSmall dorsal root ganglion neuronsTetrodotoxin-resistant sodium channelsDorsal root ganglion neuronsTTX-R currentsSodium channel expressionMRNA hybridization signalsPathological painThermal hypoalgesiaGanglion neuronsControl neuronsIsolectin IB4Channel expressionNGF deprivationMRNA expressionNeurons
1998
SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model
Tanaka M, Cummins T, Ishikawa K, Dib-Hajj S, Black J, Waxman S. SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. Neuroreport 1998, 9: 967-972. PMID: 9601651, DOI: 10.1097/00001756-199804200-00003.Peer-Reviewed Original ResearchConceptsSmall DRG neuronsDorsal root ganglion neuronsInjection of carrageenanDRG neuronsInflamed limbGanglion neuronsSodium currentTTX-R sodium currentsTetrodotoxin-resistant sodium currentInflammatory pain modelDevelopment of hyperexcitabilitySodium channel expressionPatch-clamp recordingsInflammatory painPain modelChronic painCarrageenan injectionNociceptive cellsContralateral sideNaive ratsChannel expressionProjection fieldsMRNA expressionNeuronsSodium channels
1992
Chapter 8: The expression of sodium channels in astrocytes in situ and in vitro
Black J, Sontheimer H, Minturn J, Ransom B, Waxman S. Chapter 8: The expression of sodium channels in astrocytes in situ and in vitro. Progress In Brain Research 1992, 94: 89-107. PMID: 1337617, DOI: 10.1016/s0079-6123(08)61742-2.Peer-Reviewed Original ResearchConceptsOptic nerve astrocytesSodium channel expressionChannel expressionSodium channelsOptic nerveSodium current propertiesChannel expression patternsIon channel expressionSimilar electrophysiological propertiesCultured astrocytesAstrocytesElectrophysiological propertiesSodium currentHeterogeneous groupDifferent patternsNerveDifferent subpopulationsExpressionExpression patternsCell-cell interactionsHippocampusA2B5Neurons