2024
Small fiber neuropathy
Kool D, Hoeijmakers J, Waxman S, Faber C. Small fiber neuropathy. International Review Of Neurobiology 2024 DOI: 10.1016/bs.irn.2024.10.001.Peer-Reviewed Original ResearchSmall fiber neuropathySodium channelopathiesAssociated with small fiber neuropathyTherapeutic strategiesNerve fibersNeuropathic pain disordersQuantitative sensory testingUnmyelinated C-fibersNervous systemSmall nerve fibersDiagnostic methodsPeripheral nervous systemAutonomic nervous systemNeuropathic painFiber neuropathyPain disordersClinical presentationC-fibersImmune-mediatedAutonomic dysfunctionClinical featuresSkin biopsiesDiagnosed patientsClinical trialsHereditary condition
2023
Integrative miRNA–mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy
Andelic M, Salvi E, Marcuzzo S, Marchi M, Lombardi R, Cartelli D, Cazzato D, Mehmeti E, Gelemanovic A, Paolini M, Pardo C, D'Amato I, Hoeijmakers J, Dib-Hajj S, Waxman S, Faber C, Lauria G. Integrative miRNA–mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy. Brain 2023, 146: 3049-3062. PMID: 36730021, PMCID: PMC10316770, DOI: 10.1093/brain/awad025.Peer-Reviewed Original ResearchConceptsNeuropathic painPain-related mechanismsCohort of patientsSmall nerve fibersUnmet clinical needPainful neuropathyTargeted molecular profilingNeuropathy painPathophysiological mechanismsAvailable therapiesPreclinical modelsNerve fibersLimited efficacyHealthy individualsPersonalized managementPotential drug candidatesTranslational gapPainClinical needGene targetsPatientsImmunofluorescence assaysMolecular profilingMiR-30 familyProtein expression
2014
Epidermal Nerve Fibers
Lauria G, Merkies I, Waxman S, Faber C. Epidermal Nerve Fibers. 2014, 76-79. DOI: 10.1016/b978-0-12-385157-4.00656-4.Peer-Reviewed Original ResearchEpidermal nerve fibersNerve fibersNeuropathic painSkin biopsiesProtein gene product 9.5Severity of neuropathySmall fiber neuropathySmall nerve fibersDistinct clinical syndromeSensory nervesClinical syndromeProduct 9.5Unmyelinated axonsNeuropathyPainAvailability of antibodiesBiopsySomatic functionsInnervationNociceptorsNerveSyndromeAxonsDegenerationDiagnosis
2013
Approach to Small Fiber Neuropathy
Lauria G, Merkies I, Waxman S, Faber C. Approach to Small Fiber Neuropathy. 2013, 507-517. DOI: 10.1007/978-1-4614-6567-6_25.Peer-Reviewed Original Research
2001
1995
Anoxic/ischemic injury in axons
STYS P, RANSOM B, BLACK J, WAXMAN S. Anoxic/ischemic injury in axons. 1995, 462-479. DOI: 10.1093/acprof:oso/9780195082937.003.0024.Peer-Reviewed Original ResearchNerve fibersNervous systemAnoxic/ischemic injuryPeripheral nervous systemAnoxia/ischemiaCentral nervous systemIschemic injuryPeripheral axonsAction potential propagationAxonsNormal functionPathological statesBiochemical homeostasisTransmembrane ion gradientsCellular energy metabolismInjuryEnergy metabolismPotential propagationSurvivalHuman diseasesMajor mechanismIon gradientsMembrane polarizationIschemiaDisease
1987
Chapter 8 Ionic channel organization of normal and regenerating mammalian axons
Kocsis J, Waxman S. Chapter 8 Ionic channel organization of normal and regenerating mammalian axons. Progress In Brain Research 1987, 71: 89-101. PMID: 2438722, DOI: 10.1016/s0079-6123(08)61816-6.Peer-Reviewed Original ResearchConceptsNerve fibersPeripheral nervesRegenerated nerve fibersCell remodellingNormal developmentMammalian nerve fibresSchwann cellsElectrophysiological characteristicsFine caliberMyelinated axonsImmature axonsAxonal growthMammalian axonsNerveNormal maturationRemodelling occursAxonsCell arrestRemodellingTime courseMyelinIonic channelsLong termMaturationTime of maturationMolecular neurobiology of the myelinated nerve fiber: ion-channel distributions and their implications for demyelinating diseases.
Waxman S. Molecular neurobiology of the myelinated nerve fiber: ion-channel distributions and their implications for demyelinating diseases. Proceedings Of The Association For Research In Nervous And Mental Disease 1987, 65: 7-37. PMID: 2455313.Peer-Reviewed Original Research
1986
Mammalian optic nerve fibers display two pharmacologically distinct potassium channels
Kocsis J, Gordon T, Waxman S. Mammalian optic nerve fibers display two pharmacologically distinct potassium channels. Brain Research 1986, 383: 357-361. PMID: 2429732, DOI: 10.1016/0006-8993(86)90040-5.Peer-Reviewed Original ResearchConceptsOptic nerve fibersNerve fibersDistinct potassium channelsPotassium channelsRat optic nerve fibersNerve action potentialsAction potential characteristicsAction potential repolarizationTEA-sensitive channelsIntracellular hyperpolarizationAction potentialsPotential repolarizationSuction electrodeTetraethylammoniumPotential characteristicsRepolarizationPositivity
1985
Myelin sheath remodelling in regenerated rat sciatic nerve
Hildebrand C, Kocsis J, Berglund S, Waxman S. Myelin sheath remodelling in regenerated rat sciatic nerve. Brain Research 1985, 358: 163-170. PMID: 2416385, DOI: 10.1016/0006-8993(85)90960-6.Peer-Reviewed Original ResearchConceptsRat sciatic nerveSciatic nerveRegenerated nervesAdult rat sciatic nerveRegenerated rat sciatic nerveNormal control nervesLight microscopic examinationAction potential waveformCrush lesionMonths survivalNerve segmentsControl nervesSame nerveIndividual nervesNerve fibersNerveShort sheathMyelin layersMyelin sheathPotassium channelsMicroscopic examination
1984
Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations
Hildebrand C, Waxman S. Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations. The Journal Of Comparative Neurology 1984, 224: 25-37. PMID: 6715578, DOI: 10.1002/cne.902240103.Peer-Reviewed Original ResearchConceptsRat optic nerve fibersOptic nerve fibersNerve fibersUnmyelinated optic nerve axonsPostnatal differentiationOptic nerve axonsPerinodal astrocytic processesAxoglial signallingNodes of RanvierVesiculotubular profilesOptic nerveRat pupsCompact myelin sheathAxolemmal undercoatingAstrocytic processesNerve axonsAxonal diameterMyelin sheathAxon segmentsAxonsAxolemmaRanvierDaysElectron microscopic observationsFunctional differentiation
1983
Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents
Kocsis J, Waxman S. Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents. Nature 1983, 304: 640-642. PMID: 6308475, DOI: 10.1038/304640a0.Peer-Reviewed Original ResearchConceptsNerve fibersPotassium channelsMyelinated peripheral nerve fibresAxon segmentsPeripheral nerve fibersAxon sproutsEndoneurial tubesNerve crushFunctional recoveryFunctional organizationMyelinated fibersAxon cylindersSchwann cellsBurst activityMyelinated axonsMammalian axonsAxonsPeripheral connectionsMembrane depolarizationBasement membraneK channelsRegenerated fibersAxon maturationEffects of 4-aminopyridine on rapidly and slowly conducting axons of rat corpus callosum
Preston R, Waxman S, Kocsis J. Effects of 4-aminopyridine on rapidly and slowly conducting axons of rat corpus callosum. Experimental Neurology 1983, 79: 808-820. PMID: 6825765, DOI: 10.1016/0014-4886(83)90044-4.Peer-Reviewed Original ResearchConceptsRat corpus callosumCallosal fibersCerebral axonsNerve fibersCorpus callosumMammalian peripheral nerve fibersNegative waveVoltage-dependent potassium currentsSecond negative waveNon-myelinated nerve fibresPeripheral nerve fibersField potentialsShort-latency wavesFirst negative waveCallosal stimulationPotassium blockersPotassium currentAction potentialsPeripheral fibersCallosumRecording electrodesMembrane repolarizationAxonsFunctional organizationComparable differencesAction potential propagation and conduction velocity — new perspectives and questions
Waxman S. Action potential propagation and conduction velocity — new perspectives and questions. Trends In Neurosciences 1983, 6: 157-161. DOI: 10.1016/0166-2236(83)90075-9.Peer-Reviewed Original ResearchRegeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects.
Anderson M, Waxman S. Regeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects. Journal Für Hirnforschung 1983, 24: 371-98. PMID: 6643991.Peer-Reviewed Original ResearchConceptsSpinal cordNerve cell bodiesSpinal neuronsCell bodiesNerve fibersAxon reactionElectromotor neuronsInframammalian vertebratesSpinal electromotor neuronsPeripheral nerve bridgesMammalian spinal cordCell deathNerve bridgeNew neuronsEpendymal cellsTrophic effectsCordNerve growthNeuronsNerve outgrowthCertain hormonesGrowth factorSternarchusExternal laminaAxon outgrowth
1982
Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance
Kocsis J, Waxman S, Hildebrand C, Ruiz J. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance. Proceedings Of The Royal Society B 1982, 217: 77-87. PMID: 6131423, DOI: 10.1098/rspb.1982.0095.Peer-Reviewed Original ResearchConceptsRegenerating axonsNerve fibersFiring propertiesAction potentialsPotassium conductancePotassium channelsCompound action potentialSciatic nerve fibersEarly regenerating axonsAction potential waveformRat nerve fibresMammalian nerve fibresDemyelinated axonsMyelinated fibersExtracellular applicationAxonsRecording techniquesSingle stimulusFiring characteristicsPotential waveformPresent studyRat optic nerve: Freeze-fracture studies during development of myelinated axons
Black J, Foster R, Waxman S. Rat optic nerve: Freeze-fracture studies during development of myelinated axons. Brain Research 1982, 250: 1-20. PMID: 7139310, DOI: 10.1016/0006-8993(82)90948-9.Peer-Reviewed Original ResearchConceptsOptic nerveInternodal axolemmaOptic nerve fibersRat optic nerveGreater mean particle sizeNon-myelinated axonsDays of ageEnsheathed axonsGlial ensheathmentNerve fibersMyelinated fibersDays postnatalNerveMyelinated axonsDays postparturitionAge groupsAxonsDefinitive associationAdult fibersAdult animalsMyelinationInternodal membraneCompact myelinFreeze-fracture studyAxolemmaRetrograde axon reaction following section of asynaptic nerve fibers
Waxman S, Anderson M. Retrograde axon reaction following section of asynaptic nerve fibers. Cell And Tissue Research 1982, 223: 487-492. PMID: 7093992, DOI: 10.1007/bf00218470.Peer-Reviewed Original Research
1980
Determinants of conduction velocity in myelinated nerve fibers
Waxman S. Determinants of conduction velocity in myelinated nerve fibers. Muscle & Nerve 1980, 3: 141-150. PMID: 6245357, DOI: 10.1002/mus.880030207.Peer-Reviewed Original Research
1976
Probability of conduction deficit as related to fiber length in random-distribution models of peripheral neuropathies
Waxman S, Brill M, Geschwind N, Sabin T, Lettvin J. Probability of conduction deficit as related to fiber length in random-distribution models of peripheral neuropathies. Journal Of The Neurological Sciences 1976, 29: 39-53. PMID: 181541, DOI: 10.1016/0022-510x(76)90079-4.Peer-Reviewed Original ResearchConceptsPeripheral neuropathyAxonal dysfunctionSensory deficitsDistal sensory deficitsNormal sensory conductionRapid clinical progressionConduction deficitsSensory conductionClinical progressionNerve fibersConduction blockNeuropathyDysfunctionMarked reductionProximodistal gradientPossible correlatesDeficitsSmall increaseParesthesiaeAbnormalitiesProgression